
Please do not remove this page

Terrain-aware autonomous ground navigation in
unstructured environments informed by human
demonstrations: a dissertation in Electrical
Engineering.
Ellis, Christian C.
https://repository.lib.umassd.edu/esploro/outputs/doctoral/Terrain-aware-autonomous-ground-navigation-in-unstructured/9914424897301301/filesA
ndLinks?index=0

Ellis, C. C. (2024). Terrain-aware autonomous ground navigation in unstructured environments informed
by human demonstrations: a dissertation in Electrical Engineering [University of Massachusetts
Dartmouth]. https://doi.org/10.62791/2000

Downloaded On 2025/03/26 06:15:55 -0400
It's your responsibility to determine if additional rights or permissions are needed for your use.
repository@umassd.edu
Repository homepage: repository.lib.umassd.edu

https://repository.lib.umassd.edu/esploro/outputs/doctoral/Terrain-aware-autonomous-ground-navigation-in-unstructured/9914424897301301/filesAndLinks?index=0
https://repository.lib.umassd.edu/esploro/outputs/doctoral/Terrain-aware-autonomous-ground-navigation-in-unstructured/9914424897301301
repository.lib.umassd.edu

University of Massachusetts Dartmouth

Department of Electrical and Computer Engineering

Terrain-aware Autonomous Ground Navigation in

Unstructured Environments Informed by Human

Demonstrations

A Dissertation in

Electrical Engineering

by

Christian C. Ellis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

January 2024

We approve the dissertation of Christian C. Ellis
Date of Signature

Lance Fiondella
Associate Professor, Department of Electrical and Computer Engineering
Dissertation Advisor

Hong Liu
Commonwealth Professor, Department of Electrical and Computer Engineering
Dissertation Committee

Jiawei Yuan
Associate Professor, Department of Computer and Information Science
Dissertation Committee

Maggie Wigness
Senior Computer Scientist, Army Research Laboratory, Adelphi MD
Dissertation Committee

Craig Lennon
Mathematical Statistician, Army Research Laboratory, Adelphi MD
Dissertation Committee

Liudong Xing
Graduate Program Director, Electrical Engineering

Dayalan Kasilingam
Chairperson, Department of Electrical and Computer Engineering

Jean VanderGheynst
Dean, College of Engineering

Tesfay Meressi
Associate Provost for Graduate Studies

Abstract

Terrain-aware Autonomous Ground Navigation in Unstructured Environments Informed by
Human Demonstrations

by Christian C. Ellis

Mobile robots equipped with the capability to perform autonomous waypoint navigation

can replace humans for applications such as humanitarian assistance, nuclear cleanup, re-

connaissance, and transportation. In such tasks, the robot must be able to perform complex

navigation behaviors, including the ability to navigate accurately and reliably over unstruc-

tured terrain while responding to unseen situations, similar to how a human would. To

successfully complete missions in unstructured natural environments, agents must (i) re-

spond to previously unseen environmental features, and (ii) be able to develop an accurate

perception representation of the current environment. This dissertation provides a solution

for each of the two aforementioned sub-problems using human teleoperated demonstrations.

Learning from demonstration has been shown to be advantageous for navigation tasks as it

allows for machine learning non-experts to quickly provide information needed for robots to

learn complex traversal behaviors.

First, I present a Bayesian methodology which quantifies uncertainty over the weights

of a linear reward function given a dataset of minimal human demonstrations to operate

safely in dynamic environments. This uncertainty is quantified and incorporated into a risk

averse set of weights used to generate cost maps for trajectory planning. This results in a

robot which follows risk averse trajectories by expressing uncertainty in the designed reward

function while considering all possible reward functions that satisfy the training environment

and human demonstrations.

Second, I present a methodology to obtain a perception subsystem for an autonomous

iii

ground vehicle by mapping a set of non-semantic classes from an unsupervised algorithm to

a set of high-level semantic classes using only unlabeled images and human demonstrations.

This enables the robot to obtain a unique fine-tuned set of abstract and semantic classes

which represent the current operational environment while avoiding time consuming and

expensive ground truth data labeling.

Lastly, I outline a framework which combines the two sub-problems, resulting in a

methodology which takes a data stream of unlabeled images as input, and provides as

output- (i) a refined perception representation, and (ii) a risk-averse reward function for

unstructured terrain aware navigation. This formulation enables engineers to drop a robot

in an environment it has never been in before, learn an appropriate perception representa-

tion, and learn the costs associated with the environmental terrains, using only unlabeled

data and a minimal set of human demonstrations.

iv

Acknowledgements

Completion of this dissertation would not have been possible if it were not for the mentorship

provided to me by several colleagues.

First, to Professor Lance Fiondella- who was always willing to help guide me and provide

rewarding opportunities throughout my professional career. He saw something in me starting

in my freshman year of undergraduate study, and was resilient enough to continually push I

go graduate school and obtain a doctoral degree.

Second, to Dr. Craig Lennon- who gave me the final motivation I needed to pursue

graduate school. I was so excited to meet someone who was passionate about autonomous

system safety as I was.

Third, to Dr. Maggie Wigness- whose unprecedented technical ability, novel research

ideas, and top tier mentorship made completion of this dissertation possible. Whenever I

was at a wall technically, she was able to help provide potential solutions. The way she

encouraged me to think about and frame research problems is one of the best skills I have

obtained in the past years.

Fourth, to Professor Hong Liu- whose personality and positive attitude about university

study and research is inspirational. I hope to share the same attitude with my future mentees.

Fifth, to the many fellow graduate students I have gotten close with during the past few

years both in and outside of the university- I always left our late night research conversations

feeling like we were working on something meaningful.

And lastly, to potential future graduate students- if you have a natural desire and love

for learning and are considering going to graduate school, let this sentence be the final

motivation you need. It is a journey, but worth it.

v

This research was sponsored by the Army Research Laboratory accomplished under co-

operative agreement number(s) ARL W911NF-19-2-0285 and W911NF23-2-0211. The views

and conclusions contained in this document are those of the authors and should not be inter-

preted as representing the official policies; either expressed or implied, of the Army Research

Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposed notwithstanding any copyright notation herein.

vi

Contents

List of Figures x

List of Tables xii

Chapter 1 Problem Statement 1

1.1 Overview . 1

1.2 Dissertation Scope . 3

1.3 Research Timeline . 4

Chapter 2 Background Summary 7

2.1 Autonomy Stack . 7

2.1.1 Overview . 7

2.1.2 Example Levels of Autonomous Capability 8

2.1.3 Robot Operating System (ROS) . 9

2.2 Preliminaries . 10

2.2.1 Machine Learning . 10

2.2.2 Markov Decision Process . 11

2.3 Teaching Robots to Learn From Humans . 12

2.3.1 Learning from Demonstration . 12

2.3.2 Bayesian Inverse Reinforcement Learning 13

2.3.3 Safe Autonomy . 13

2.4 Robotic Perception . 14

2.4.1 Semantic Segmentation . 15

2.4.2 Learning System Adaptation . 16

2.4.3 Unsupervised Visual Representation Learning 16

vii

Chapter 3 Task 1 - Responding to Previously Unseen Environmental Features 18

3.1 Abstract . 18

3.2 Introduction . 19

3.3 Methodology . 21

3.3.1 Environment and Robot Modeling . 21

3.3.2 Problem Formulation . 23

3.3.3 Likelihood Modeling . 24

3.3.4 Prior Modeling . 25

3.3.5 Planning Risk Averse Behavior . 27

3.4 Evaluation . 29

3.4.1 Experiment Overview . 29

3.4.2 Robotic Autonomy Stack . 31

3.4.3 Results . 32

3.5 Conclusion . 37

Chapter 4 Task 2 - Learning an Accurate Perception Representation of the Current

Environment 39

4.1 Definitions . 39

4.2 Abstract . 40

4.3 Introduction . 41

4.4 Methodology . 45

4.4.1 Stage 1: Stream-based Unsupervised Segmentation 45

4.4.2 Stage 2: Terrain Inference From Human Demonstration 47

4.5 Evaluation - Simulation . 54

4.5.1 Overview . 54

4.5.2 Perception Simulation . 54

viii

4.5.3 Experiment 1: Capability to identify and merge labels 60

4.5.4 Experiment 2: Capability to identify and discard poor labels 67

4.5.5 Experiment 3: Robustness to All Noise Sources 73

4.5.6 Summary of Findings . 78

4.6 Evaluation - Real World Robotics Dataset 79

4.6.1 Evaluation Metrics . 79

4.6.2 Quantitative Results . 81

4.6.3 Qualitative Results . 84

4.7 Evaluation - Autonomous Waypoint Navigation 85

4.7.1 Experiment Setup . 85

4.7.2 Experimental Results . 86

4.8 Conclusion . 91

4.9 Appendix- Unsupervised Semantic Scene Labeling 92

Chapter 5 Conclusion 97

5.1 Overview of contributions . 97

5.2 Future Work . 99

5.2.1 Risk Averse Bayesian Reward Learning from Human

Demonstrations [25] . 99

5.2.2 Unsupervised Perception Model Refinement [24] 101

5.2.3 Autonomous Systems Safety and Formal Verification 103

ix

List of Figures

Figure 3.1: Simplified illustration to demonstrate the impact of distributional shift . 19

Figure 3.2: Birds-eye view of test scenarios in the simulated environment 29

Figure 3.3: Simulated environment with Clearpath warthog running ROS equipped

with an array of virtual sensors . 31

Figure 3.4: Trajectory for Test Scenario 2 (T2) generated using two reward models

with waypoint region (blue circle) . 35

Figure 3.5: Tradeoff between risk and path length 37

Figure 4.1: A visual representation of the proposed algorithm 41

Figure 4.2: Segmentation at different levels of granularity 43

Figure 4.3: Example of oversegmentation output from USSL in a simulated

unstructured outdoor environment . 46

Figure 4.4: Example of simulated over-segmented terrain output 49

Figure 4.5: Architecture diagram of the over-segmentation simulator 55

Figure 4.6: Illustration of the different sources of error commonly found in

unsupervised perception algorithms alongside the ground truth 56

Figure 4.7: PMF of a Binomial distributon where n = 3 and p = 0.8 61

Figure 4.8: Experiment 1. Column 1: Raw image; Column 2: Illustration of the

robot’s unsupervised over-segmented image with it’s future trajectory . . 63

Figure 4.9: Experiment 1. Left: Ground truth. Middle: Initial over-segmented

model. Right: Refined model . 66

Figure 4.10: Experiment 2. Column 1: Raw image; Column 2: Illustration of the

robot’s unsupervised over-segmented image with it’s future trajectory . . 69

Figure 4.11: Experiment 2. Left: Ground truth. Middle: Initial over-segmented

model with noisy labels. Right: Refined model 72

x

Figure 4.12: Experiment 3. Left: Ground truth. Middle: Initial over-segmented

model with noisy labels. Right: Refined model. 77

Figure 4.13: Qualitative segmentation results at frames where each main terrain

appears . 84

Figure 4.14: Birds eye view of the test scenario for autonomous operation in an

unstructured environment containing 3 terrains 87

Figure 4.15: Birds eye view showing best case autonomous traversal performance . . . 88

Figure 4.16: Birds eye view showing median case autonomous traversal performance . 89

Figure 4.17: Birds eye view showing worst case autonomous traversal performance . . 89

xi

List of Tables

Table 3.1: Marginal Entropy . 33

Table 3.2: Feature Weight Vectors . 34

Table 3.3: Total Average Risk Taken . 34

Table 3.4: Average Path Length . 36

Table 4.1: Experiment 1. Traversal Evidence (feature counts) 62

Table 4.2: Experiment 1. Abstract Label Entropy (1-8) 64

Table 4.3: Experiment 1. Abstract Label Entropy (9-15) 64

Table 4.4: Experiment 1. Quantity of labels . 65

Table 4.5: Experiment 2. Traversal Evidence (feature counts) 68

Table 4.6: Experiment 2. Abstract Label Entropy (1-8) 70

Table 4.7: Experiment 2. Abstract Label Entropy (9-17) 70

Table 4.8: Experiment 2. Quantity of labels . 71

Table 4.9: Confusion Matrix . 73

Table 4.10: Experiment 3. Traversal Evidence (feature counts) 74

Table 4.11: Experiment 3. Abstract Label Entropy (1-8) 75

Table 4.12: Experiment 3. Abstract Label Entropy (9-17) 75

Table 4.13: Experiment 3. Quantity of labels . 76

Table 4.14: Number of USSL Labels . 82

Table 4.15: 3D Segmentation Accuracy . 82

Table 4.16: Under-segmentation and over-segmentation 83

Table 4.17: Reward weights among semantic terrains 86

Table 4.18: Modified Hausdorff Distance for each reward model 88

xii

Chapter 1 Problem Statement

1.1 Overview

Mobile robots equipped with the capability to perform autonomous waypoint navigation can

replace or assist humans for applications such as humanitarian assistance, nuclear cleanup,

reconnaissance, and transportation. In such tasks, the robot must be able to perform com-

plex navigation behaviors, including the ability to navigate accurately and reliably over

unstructured terrain while responding to unseen situations, similar to how a human would.

To communicate desired robot behavior in both positive and negative environmental sce-

narios such as staying on the road while avoiding the mud, roboticists assign rewards (or

inversely, costs) which direct the robot toward states leading to the achievement of goals

while avoiding negative, potentially dangerous states [71]. In the context of unstructured

autonomous navigation, environmental features such as terrain and obstacle information are

used to define the set of possible states. States encode information about the environmental

features present for a particular area of physical space in time. The set of features which

describe states form what is known as a reward basis. A reward basis scopes what is and

is not possible for a robot to learn; if a robot’s features do not capture information about

the underlying terrain, it will not be able to reason over terrain. Therefore, to reach spec-

ified goals, states must encode information accurately using representative features which

describe the current environment. For robots that need to quickly transition between vary-

ing unstructured environments, defining rewards prior to understanding all future features

is often unachievable as either (i) the robot is unable to perceive the new feature, and/or (ii)

the numerical reward for each feature is unknown.

Moreover, to implement complex behaviors beyond obstacle avoidance, many current

approaches employ machine learning methods requiring large amounts of labeled data. While

1

2
simulations can quickly generate large amounts of labeled data, the same cannot be said for

real world environments, limiting adoption of mobile robots to complete the aforementioned

applications. Furthermore, solutions are often brittle, exhibiting poor performance when

operating outside of environments where they were designed or trained. Therefore, there is

a need for methods which can learn navigation behaviors from limited data while being able

to adapt to novel scenarios.

In such scenarios, it is more effective for a human supervisor to provide examples of de-

sired behavior than for a engineer to explicitly define it. Explicit encoding often leads to a

misalignment of what the human intended the robot’s goals to be, and the actual behavior

exhibited [68]. This results in negative side effects [4] such as the robot taking a danger-

ous trajectory to reach a goal or ruthlessly following directions without considerations of

how their actions affect other actors in the environment. Contrarily, inverse reinforcement

learning (IRL) [7] seeks to learn a reward function given a limited dataset of demonstra-

tions, which eliminates the need for an expert to hand code these rewards. However, the

performance of such approaches is limited to the states only visited in the demonstrations,

and their underlying feature set. Many IRL techniques make the unrealistic assumption that

reward information obtained during training accurately characterizes future operational envi-

ronments. Certain states and the features that describe states may have never been encoun-

tered, leading to uncertainty in their reward [33]. This presents a challenge for autonomous

navigation since it is desirable for a robotic system to be robust to operation in unknown,

possibly adversarial, environments which are likely to contain unforeseen conditions.

Therefore, this dissertation focuses on a ground robot’s ability to incorporate human

demonstrations as a supervisory signal to solve each respective preceding problem by (i)

obtaining a semantic perception model capable of classifying terrains present in the current

environment given a sequence of unlabeled images and (ii) using Bayesian inverse reinforce-

3
ment learning to learn rewards associated with the terrains identified to build cost-maps

online for autonomous waypoint traversal.

1.2 Dissertation Scope

Recent approaches in image-based supervised perception algorithms have enabled autonomous

robots to semantically understand the current operational environment. However, such ap-

proaches are limited to a set of known semantic features and require expensive and time-

consuming labeled training data. Even in scenarios where the set of all semantic features

to complete a mission is known, the relative rewards and preferences among them which

result in the optimal navigation trajectory is unknown. If the predefined reward function

fails to capture all aspects of the agent’s operational environment, undesired behavior will

occur when the agent fails to optimize the true reward function and therefore express indif-

ference to potentially dangerous, unseen scenarios. More generally, current approaches to

autonomous navigation are limited to environments representative of the robot’s previous

experience and brittle to anything outside it.

If the robot is unable to recognize new environmental features, it will be unable to

respond to them. Consider a robot which has been optimized in a wooded, off-road environ-

ment described by a representative reward function. Once the robot is placed in a different

environment such as an urban area, the original reward function will fail to accurately de-

scribe the desired behavior due to the presence of new environmental features, leading to

potentially dangerous behavior. Therefore, in order to complete missions in unstructured

natural environments, agents must succeed at the following tasks:

1. Responding to previously unseen environmental features similar to how a human

supervisor would

2. Obtain an accurate perception representation of the current environment

4
This dissertation provides a solution for each of the two aforementioned tasks using

human teleoperated demonstrations. Learning from demonstration has been shown to be

advantageous for navigation tasks as it allows for machine learning non-experts to quickly

provide information needed for robots to learn complex traversal behaviors.

With respect to task 1, I present a Bayesian technique which quantifies uncertainty over

the weights of a linear reward function given a dataset of minimal human demonstrations

to operate safely in dynamic environments. This uncertainty is quantified and incorporated

into a risk averse set of weights used to generate cost maps for trajectory planning. This

results in a robot which follows risk averse trajectories by expressing uncertainty in the

designed reward function by considering all possible parameterizations of a reward function

that satisfy the training environment and human demonstrations.

Regarding task 2, I first present a technique to obtain a perception subsystem for an

autonomous ground vehicle by mapping a set of non-semantic feature labels from an unsu-

pervised algorithm to a set of high-level semantic labels. This enables the robot to obtain

a unique fine-tuned set of abstract labels which represent the current operational environ-

ment while avoiding time-consuming and expensive ground truth data labeling. Then, the

resulting label set is used as the reward basis for inverse reinforcement learning.

Lastly, I outline an algorithm which combines the two tasks, resulting in a technique

which takes a data stream of unlabeled images and a set of human demonstrations as input,

and learns a reward function for unstructured terrain-aware navigation as output.

1.3 Research Timeline

Work completed during this dissertation has focused on three lines of related research, in

order from most effort to least; (i) Terrain-aware autonomous ground navigation in un-

structured environments informed by human demonstrations (this dissertation∗), (ii) Formal
∗Supported by ARL W911NF-19-2-0285.

5
verification of autonomous ground vehicles learning from human demonstration†, and (iii)

Review of assurance, test, and evaluation techniques for autonomous ground systems.

(i) Initial work by Ellis et al [25] showed that the uncertainty over terrain features tra-

versed during demonstrations can be quantified through the normalized Shannon entropy of

a feature’s corresponding marginal distribution. This enabled an autonomous ground vehi-

cle to avoid terrains which were never seen during training. Recently submitted work [24],

addresses the limitations of quickly training robot perception systems by providing a method-

ology to learn environmental features using only unlabeled data and human demonstrations.

This capability allows non-technical users to quickly train new perception models which are

tailored to the current operational environment. Moreover, this methodology refines the

over-segmentation found in an initial unsupervised segmentation model by discarding poor

labels while simultaneously merging labels representing the same semantic concept. Lastly,

the results from [24] are used to form a reward basis that utilizes [25].

(ii) Recent work [20] with UT Austin collaborators resolved information asymmetry be-

tween a demonstrator who has full knowledge of the underlying environment and a learner

with limited information by modeling limited sensor range. Moreover, side information about

the environment provided by the human and given to the agent are encoded as temporal

logic constraints. Experiments performed in ARL’s unity simulator show that a learner finds

policies that achieve more cumulative reward when explicitly considering limited sensor ob-

servations and utilizing side information. In comparison to [25], this work seeks to obtain

safe systems by explicitly modeling unsafe states rather than assuming certain environmental

features are unsafe.

(iii) More broadly, [23] informs the autonomous systems community of the status, chal-

lenges, and remaining work regarding assurance of learning enabled autonomous systems.
†Supported by ARL W911NF-20-2-0132.

6
We reviewed state of the art technical approaches to assurance and identified where they

fit in the systems engineering process. This work views autonomous system safety from a

broader, more philosophical lens- outlining the key issues that arise when attempting to

develop safe autonomous systems, and the current approaches to resolving such issues.

Chapter 2 Background Summary

2.1 Autonomy Stack

2.1.1 Overview

As previously mentioned the methods presented in this dissertation are intended for mobile

wheeled ground robots operating in unstructured environments. Unstructured refers to envi-

ronments which are off-road in nature, in contrast to clearly defined and marked roads often

traversed by passenger vehicles. Unstructured environments often contain a combination of

unmarked asphalt or concrete roads; loosely defined paths made of gravel, dirt, or grass; and

obstacles throughout such as large rocks, bushes, trees, and fallen trees. Due to their unpre-

dictable nature, resulting autonomous navigation systems often differ greatly than the ones

found today on passenger vehicles. Specifically, the sensors used, localization and mapping

techniques, obstacle detection subsystems, and planning techniques must accommodate the

unpredictable, and complex nature of such environments. For example, an autonomous sys-

tem operating only on highways in the USA can attempt to plan a set amount of time ahead

with structured cues to reason and act, such as by following and staying within the dotted

lines marking lanes on a highway. However, in unstructured environments the existence of

dotted lines marking lanes cannot be assumed.

To accommodate such environments the methods presented are deployed on rugged

robotic systems capable of autonomously traversing unstructured terrain. Specifically, the

methods presented are integrated into an existing autonomous software stack explicitly de-

signed for the same purpose. Resulting methods developed in subsequent chapters target

additions to particular subsystems of this software stack to increase overall performance and

capability to complete pre-defined missions. The autonomous software stack is capable of

running the same exact code on both real world mobile field robotics, and in a 3D graphics

7

8
engine which simulates unstructured environments. The primary difference between simu-

lated and real world results is in quality of perceived inputs from sensors. Simulated results

often have perfect sensor readings, while in the real world they may be degraded due to

intrinsic issues with the sensor such as calibration, or external factors such as mud blocking

a sensor.

2.1.2 Example Levels of Autonomous Capability

As previously mentioned, the methods presented in this dissertation are integrated and de-

ployed within an existing software stack developed by the U.S Army Research Laboratory,

referred to as the ARL autonomy stack. The primary goal of this software stack is to provide

autonomous navigation and subsequent intelligence subsystems to enable navigation tasks

such as exploration, mapping, perception, and reasoning. As background, in this subsection

I describe the different levels of capability one often likes to achieve when performing au-

tonomous waypoint navigation. Please note that the levels of capability identified are brief

descriptions of common use cases for mobile wheeled ground robotics aimed at informing the

reader, and that there exists many other levels of capability as determined by the missions

one would like to perform.

At the lowest capability, a robot finds the shortest path to a goal location while avoiding

obstacles in the robots global frame, enabled by a simultaneous localization and mapping

(SLAM) system. Moving up a level of capability, a robot finds the best obstacle free path to

a goal location. This capability is possible by adding object detection subsystems enabled by

the robot’s camera and/or laser radar (LIDAR) sensors. In the final level of capability, the

robot keeps track of a semantic map of the world, the terrain, obstacles, and other features

of interest. The resulting semantic map(s) act as input to guide the robot to the specified

waypoint, while following certain mission constraints, such as staying on the road when it

is available, avoiding water, avoiding certain dangerous areas, certain elevations, etc. With

9
respect to the methods presented in this dissertation, they target this level. That is, the

use of semantic information, alongside traditional SLAM to inform autonomous waypoint

navigation.

2.1.3 Robot Operating System (ROS)

Aforementioned capabilities are implemented using Robot Operating System

(ROS) [65]. Specifically, as of writing this dissertation, the system uses ROS 1.0 version

Melodic. ROS is a common choice in the academic community due to its open-source na-

ture containing several packages implementing common robotics subsystems and problems,

widespread adoption, and active community. Breifly, ROS is an open-source software frame-

work and middle-ware layer primarily written in C++ and Python3. Core functionality

packaged within ROS includes- message passing between multiple processes (referred to as

ROS nodes, or simply nodes) using TCP/IP and direct process to process communication,

heterogeneous computer clustering (many nodes running on multiple connected computers),

low-level hardware control and abstraction, package management, and build tools. Each

major ROS release targets a particular Ubuntu (UNIX) distribution, and as a result, ROS

1.0 runs on top of the Ubuntu operating system.

10

2.2 Preliminaries

This section explains preliminary material and reviews related fields in which this disser-

tation’s scope and problem formulation occupy. First, preliminary concepts required to

understand the dissertation including machine learning (Sec. 2.2.1), and Markov decision

processes (Sec. 2.2.1) are explained. Then, a literature review of the following fields is

provided; learning from demonstration (LfD) (Sec. 2.3.1), Bayesian inverse reinforcement

learning (B-IRL) (Sec. 2.3.2), safe autonomy (Sec. 2.3.3), semantic segmentation (Sec.

2.4.1), unsupervised learning system adaptation (Sec. 2.4.2), and unsupervised visual rep-

resentation learning (Sec. 2.4.3). Fields are grouped together by their relation to each

respective sub-problem identified in the last sentence of the abstract, namely, (i) learning a

perception model to identify terrains present in the current environment alongside unlabeled

images and (ii) using Bayesian inverse reinforcement learning (IRL) to learn the traversal

rewards associated with the terrains identified to build cost-maps online for autonomous

waypoint traversal.

2.2.1 Machine Learning

In machine learning (ML), tasks are completed by training a model from data to perform

function approximation using a combination of mathematical optimization and statistical

techniques [12]. This results in computer programs which are able to complete a task without

constructing a set of exact solution instructions ahead of time. There are three main forms

of learning, including supervised, unsupervised, and reinforcement learning. In supervised

learning, each training sample from the dataset is associated with a set of features and a

corresponding label to train a model. For example, a neural network can be trained on a

dataset of images containing handwritten digits, where each sample’s corresponding label is

11
0 through 9. In unsupervised learning, each training sample is only represented by a set of

extracted features, which are subsequently used to identify the underlying feature patterns

throughout the dataset. For example, clustering techniques divide a dataset into k distinct

groups, where all data points in a group are similar with respect to some distance measure.

Finally, in reinforcement learning, an autonomous agent learns the optimal way to act over

time via interaction with the environment, such as an autonomous robot learning how to

move its actuators and joints without hitting obstacles.

2.2.2 Markov Decision Process

An autonomous robot navigating in an environment is modeled using a Markov decision

process (MDP) [64], M , represented by the following tuple

M = hS,A, T, R, �i (2.1)

where S is a set of states, A is a set of actions, T is the state transition distribution over the

next state given the present state and action represented by T (st+1|st, a), R is the reward

function representing the numerical reward received by taking action a 2 A in state s 2 S

represented by R(s, a) : S ⇥ A ! R, and � 2 [0, 1) is the discount factor representing

the weight on future unseen rewards. The solution to an MDP is a policy ⇡(s) : S ! A,

determining the action a a robot will take in state s. The optimal policy for an MDP (⇡⇤)

maximizes the expected cumulative reward.

12

2.3 Teaching Robots to Learn From Humans

This section describes how human demonstrations can be used to learn a reward model for

a MDP.

2.3.1 Learning from Demonstration

In reward learning, the goal is to obtain a unique reward function from human demonstration

that maps human provided trajectories through a state space to scalar rewards [37]. More

generally, autonomous agents learning solely from demonstrations to replicate behavior is

called imitation learning [61]. There are two distinct sub-fields within imitation learning,

behavioral cloning [10, 76] and IRL [57]. A robot learns a policy directly in behavioral

cloning, whereas a robot implementing IRL learns a reward function, which may then be

used to obtain a policy. Because of this extra step, it is typically more complex to obtain

a solution with IRL methods. The chosen approach is dependent upon the following - what

is the most parsimonious model description of the desired behavior, reward or policy? [61].

Behavioral cloning is sufficient for problems that can be solved by modeling a distribution

over demonstrated trajectories, where feature extraction is difficult and environments are

essentially static [58]. Problems which involve inferring expert intent or operating in a large

space of potential environments requiring generalization, such as navigation, may be solved

with IRL methods [86, 81].

IRL is an ill-posed problem [57] because many possible reward functions can character-

ize robot behavior. Attempts to identify effective solutions have led to several competing

methodologies. For a comprehensive survey, we refer the reader to the following references

[61, 8, 92, 6]. Nevertheless, previous work shows that learning from demonstration scales

to real robotic systems for both linear [67, 81], and non-linear problems [87]. Similarly,

deep learning approaches to IRL have been successful in the Atari [34] and MuJoCo envi-

13
ronments [13]. Since this dissertation seeks to learn a representative reward function from

minimal demonstrations, a linear model is chosen instead of a non-linear deep learning ap-

proach.

2.3.2 Bayesian Inverse Reinforcement Learning

By taking the Bayesian viewpoint, a robot can quantifiably establish a belief over multi-

ple reward functions and evaluate their uncertainty. In contrast to maximum likelihood

approaches, Bayesian IRL methods provide an approach to reason about many different

reward functions. Each reward function is assigned a point probability from a posterior dis-

tribution. Pre-computing uncertainty also potentially allows a systems engineer to intervene

and directly specify or correct reward values relative to those learned from demonstrations

(e.g. to specify that grass is as good as dirt). Ramachandran and Amir [66] proposed

Bayesian IRL as a methodology to build a posterior density over reward functions given a

dataset of demonstrations. Choi and Kim [17] developed a framework subsuming previous

IRL methods and showed that the maximum a posteriori estimator is a better estimator

than the posterior mean proposed in [66]. This dissertation also takes the Bayesian view-

point to enable the robot to quantifiably establish a belief over multiple reward functions

and evaluate their uncertainty. In contrast to Refs. [66, 17], this dissertation’s methodology

differs by explicitly considering safety when learning from demonstration.

2.3.3 Safe Autonomy

The reward function obtained from demonstrations in a training environment may not be

well suited for guiding robot behavior in a new operational environment, leading to negative

side effects[4, 45]. Safe imitation learning seeks to obtain behavior that avoids negative side

effects [91, 52, 14]. Although these approaches explicitly consider safety, they do not directly

address changes in the environment (distributional shift). Lutjens et al. [49] obtained model

14
uncertainty estimates to avoid novel obstacles from perception systems in the reinforcement

learning framework, but did not consider the imitation learning scenario. Janson et al.

[36] sought safe motion planning in unknown environments, but only considered obstacle

avoidance and not a preference over different terrains. Hadfield-Menell et al. [33] considered

safety to distributional shift, but do not explicitly consider learning from demonstration and

their weight selection technique changes at runtime. Menda et al. [52], use an ensemble of

neural networks to quantify the uncertainty of a non-expert policy obtained from an imitation

learning method. This dissertation differs in two ways, (i) we take a linear approach which

takes a set of semantic features as input and outputs a single reward function rather than a

policy (ii) we explicitly consider the agent to navigate in operational environments separate

than the training environment. Our intended use case is one in which training occurs from a

dataset of demonstrations in an environment that is likely to be different than the operational

environment. Consequently, this dissertation presents a method to obtain a single reward

model before operating in a new environment, both for traceability and to save time and

computational resources, when operating online in the deployment environment.

2.4 Robotic Perception

In order to assign rewards to environmental features, robots must first be able to develop

feature representations which describe what they are currently perceiving from their sensors.

The initial applications of scene understanding came predominantly from advances in image-

based semantic segmentation. Recent achievements have been aided by sub-fields including

unsupervised learning system adaptation, and unsupervised visual representation learning.

A concise review of each follows.

15

2.4.1 Semantic Segmentation

Semantic segmentation [59, 90] is the task of identifying boundaries (segments) while si-

multaneously classifying every pixel in an image to a discrete label. Formally, a function

f : X ! Y maps the space of images, X, to a label space, Y , which consists of n semantic

classes. This function directly maps every pixel in an image to a single label in a set of labels.

State-of-the-art semantic segmentation approaches [9, 15, 29] are supervised in nature and

make use of deep neural network architectures. In practice, these advances have enabled

vision-based autonomous navigation, giving rise to fine-grained trajectory generation that

can reason about specific terrain or object classes [54, 83] and the uncertainty associated

with them [25, 74].

Although supervised semantic segmentation has produced high quality visual perception

output, approaches are limited by (i) the need for large datasets of images and their asso-

ciated ground truth labels, (ii) their inability to generalize well across domains (e.g., from

structured to unstructured environments [39, 82]), and (iii) their discrete class output that

does not allow for novel class discovery or open-world operation. Resolving such limitations

is a critical need for off-road autonomous navigation as limited a priori knowledge of the envi-

ronment is available. To address the shortcomings, unsupervised semantic segmentation [38,

16] has demonstrated the ability to learn without labels.

Stream-based unsupervised segmentation [89, 80] has focused on using temporal informa-

tion to segment video streams through time, making them ideal for online operation. This

enables novel concept discovery as encountered over time. Because these algorithms operate

in an online fashion without batch data for learning, they tend to be more conservative to

ensure segmented regions respect true class boundaries in the data stream. Often this results

in unsupervised segmentation output that is over-segmented, such that many segments map

to the same high-level ground truth label. The pipeline proposed in this dissertation (Sec. 4)

16
utilizes a stream-based unsupervised segmentation algorithm and addresses the shortcoming

of over-segmentation, while automatically associating the learned segments with high-level

semantics that can be used for terrain-aware navigation.

2.4.2 Learning System Adaptation

Partly based on the realization that static learning systems limit real world applicability,

much research effort has been devoted to developing learning systems which can adapt to

new data and their associated output classes. Specifically, such systems must adapt without

the need for retraining the entire system, or using human effort to label new data. In

transfer learning [94], weights from a pre-trained model are used as the initial weights of a

model performing a different but similar task, whereas in incremental learning [48], an initial

trained model is tasked to adapt online to new incoming data without forgetting the existing

knowledge from previous data points in the stream. Similar work in domain adaptation [75]

extends a model trained in a source domain to execute tasks in a similar although different

target domain with a separate underlying data generation distribution. While the proposed

algorithm (Sec. 4.4) loosely fits in the category of methods discussed, the proposed approach

is distinct as we semantically classify (over-segment) the different terrain features seen in an

environment for a single task, without explicitly considering the target distribution.

2.4.3 Unsupervised Visual Representation Learning

Unsupervised representation learning [11] searches for an appropriate hierarchy of concepts,

or features, which explain a dataset using unlabeled data. Initial work [21] incorporates self-

supervision in the form of a pretext signal which relates parts of the unlabeled data spatially.

This relation is used as an intermediate supervisory signal aimed at increasing overall perfor-

mance [26]. Similar work incorporates linear transformations [30] or temporal [44] relations.

Although self-supervised visual representation learning achieves superior performance than

17
their unsupervised counterparts, neural network architecture designs which minorly affect

supervised models may majorly affect performance of self-supervised models [42].

Most similar to this dissertation, weakly supervised representation learning approaches [93]

utilize sparse, incomplete labeling to learn a model. Distinctly, this dissertation utilizes hu-

man feedback as a weak supervisory signal to aid unsupervised visual representation learning.

Specifically, inexact supervision in the form of a human teleoperated robot navigation tra-

jectories with a single label at each time step representing which terrain the robot traversed

is used.

Chapter 3 Task 1 - Responding to Previously Unseen Environmen-

tal Features

3.1 Abstract

Traditional imitation learning provides a set of methods and algorithms to learn a reward

function or policy from expert demonstrations. Learning from demonstration has been shown

to be advantageous for navigation tasks as it allows for machine learning non-experts to

quickly provide information needed to learn complex traversal behaviors. However, a minimal

set of demonstrations is unlikely to capture all relevant information needed to achieve the

desired behavior in every possible future operational environment. Due to distributional shift

among environments, a robot may encounter features that were rarely or never observed

during training for which the appropriate reward value is uncertain, leading to undesired

outcomes. This chapter proposes a Bayesian technique which quantifies uncertainty over

the weights of a linear reward function given a dataset of minimal human demonstrations

to operate safely in novel environments. This uncertainty is quantified and incorporated

into a risk averse set of weights used to generate cost maps for planning. Experiments in a

3-D environment with a simulated robot show that our proposed algorithm enables a robot

to avoid dangerous terrain completely in two out of three test scenarios and accumulates a

lower amount of risk than related approaches in all scenarios without requiring any additional

demonstrations.

18

19

3.2 Introduction

Figure 3.1: Simplified illustration to demonstrate the impact of distributional shift.
Left: Training environment. Middle: Test environment. Right: Planned trajecto-
ries in the testing environment for various learning methods.

Robot behavior can be described through a reward function which directs the robot toward

states leading to the achievement of goals and developer specifications [41]. This encoding

often focuses on goals defined during system design, implicitly expressing indifference to all

others, resulting in negative side effects [4] such as the robot traversing a harmful terrain or

crashing into an obstacle. Inverse reinforcement learning (IRL) [57, 1, 96] seeks to learn a

reward function given a dataset of demonstrations, which eliminates the need for an expert

to hand code these rewards. However, the performance of these approaches are sensitive

to the features seen in the demonstrations. Certain states and the features that describe

them may have never been encountered, leading to uncertainty in their reward [45, 33]. This

presents a challenge for autonomous navigation since it is desirable for a robotic system to

be robust to operation in unknown, possibly adversarial, environments which are likely to

contain unforeseen conditions.

As an example, consider an autonomous ground robot which learns to navigate in an

environment consisting of four types of terrain, including grass, dirt, road, and water (Fig.

3.1 middle). In the training environment (Fig. 3.1 left), none of the states contain the water

20
feature, and subsequently neither do the demonstrations. Maximum likelihood approaches

such as [96] implicitly set the reward weight for water to their initialization value because

its feature count is zero. Since the demonstrations do not provide full reward information,

the robot fails to avoid water in the test environment (Fig. 3.1 right). Water may have been

avoided if different initial rewards were used, but this would not resolve the more general

problem of how to handle states possessing uncertain reward values. As a step toward solving

this problem, we propose a systematic approach which utilizes Bayesian analysis to quantify

uncertainty for each terrain’s reward weight. This approach allows the robot to achieve risk

averse behavior by avoiding terrain possessing high uncertainty (Fig. 3.1 right).

Previous imitation learning methods have provided a Bayesian framework to incorporate

prior information and obtain a unique reward function [66, 17]. Most similar to our work,

Hadfield-Menell et al. [33] provide a Bayesian technique, which explicitly considers safety

to distributional shift in environments. The difference between their methodology and ours

is the assumption of a Bayesian posterior. Specifically, they obtain a posterior over reward

functions given a proxy reward function and a world model, while we do not assume a proxy

reward function is given, but rather a dataset of demonstrations. This change in assumptions

allows developers to obtain a reward function which explicitly considers safety solely from

observed behavior. However, the main difference between Ref. [33] and our methodology

is in the reward function selection technique. The reward function obtained in Ref. [33]

changes at runtime, requiring planning with multiple reward functions online, whereas our

technique outputs a single reward function at the end of training. Online planning with a

single reward function reduces computational overhead, thereby increasing the capability to

scale to larger environments.

We build upon previous IRL work [81], which learned traversal behavior reward models

for autonomous navigation. This method assigns high rewards to state features visited more

21
frequently during demonstration, implicitly assuming that high visitation frequency means

the state feature is better than those visited less frequently. Our inclusion of uncertainty

modifies this assumption such that if a state feature is visited less it is associated with more

uncertainty. We propose risk averse Bayesian reward learning (RABRL), as a method to

obtain a unique, risk averse linear reward function solely from a dataset of demonstrations for

autonomous waypoint navigation. The contributions are twofold, we provide a methodology

to quantify uncertainty over reward functions from a set of human demonstrations, and

provide a weight selection technique, which chooses a single weight set during training.

The remainder of the chapter is organized as follows. Section 3.3 presents our method-

ology showing how a posterior over reward functions is used to obtain a unique set of risk

averse weights. Section 3.4 describes experimental setup and results obtained from an au-

tonomous ground robot navigating in a 3-D simulation. Section 3.5 concludes with areas

this research can impact.

3.3 Methodology

An outline of the methodology follows. Section 3.3.1 formally models the problem as an

MDP without rewards. Section 3.3.2 formulates the problem. Section 3.3.3 explains how the

likelihood of a demonstrator’s reward intent over terrains is modeled. Section 3.3.4 describes

two distributions to encode prior reward information. Finally, section 3.3.5 describes our

methodology to select the reward weights for each feature.

3.3.1 Environment and Robot Modeling

Recall from Sec. 2.2.2 that an autonomous robot navigating in an environment is modeled

using a Markov Decision Process (MDP), M , represented by the following tuple

M = hS,A, T, R, �i (3.1)

22
where S is a set of states, A is a set of actions, T is the state transition distribution over the

next state given the present state and action represented by T (st+1|st, a), R is the reward

function representing the numerical reward received by taking action a 2 A in state s 2 S

represented by R(s, a) : S ⇥ A ! R, and � 2 [0, 1) is the discount factor representing

the weight on future unseen rewards. The solution to an MDP is a policy ⇡(s) : S ! A,

determining the action a a robot will take in state s. The optimal policy for an MDP (⇡⇤)

maximizes the expected cumulative reward.

Scenarios where the agent finds itself in an unknown environment are modeled by omitting

R in Eq. (3.1).

M\R = hS,A, T,�, �i (3.2)

In the reinforcement learning framework, a reward function is considered to be the most

succinct, robust, and transferable definition of a task [57]. To learn a reward function, an

agent is supplied demonstrations in the form of trajectories that depict the desired behavior.

For a navigation task, the cumulative reward associated with a trajectory demonstration can

be found through its state sequence ⇠ = [s1, s2, ..., sT], where T is the number of time steps.

Although we only consider reward functions that are a function of state R(st), one may

also wish to consider reward functions that are a function of the state and action R(st, at)

or reward functions that are a function of the state, action, and next state R(st, at, s0t).

This modeling choice depends on the goals and preferences the system designer desires the

agent to learn [72]. Formally, this is an example of a reward design problem [71], where the

true reward function is unobservable, but possible reward functions are assessed by a fitness

function given a distribution of environments the agent may find itself in. The behavior

of an agent operating in M\R is summarized as a probability distribution over trajectories

given a vector of reward weights P (⇠|ŵ) and is referred to as a robot model. For a list of

robot models incorporating human feedback, we refer the reader to [37].

23

3.3.2 Problem Formulation

We seek a posterior over the weights describing a reward function,

P (w = ŵ|D) =
P (D|ŵ)P (ŵ)

P (D)
(3.3)

where w is a random vector describing the weights of a reward function, ŵ is an esti-

mator of w, D is a dataset of demonstrations (navigation trajectories) such that D =

{(⇠i), (⇠i+1), . . . , (⇠n)}ni=1. We consider reward functions as a function of trajectory states

expressed as a linear combination between estimated weights ŵ and features �(s) represent-

ing a state such that � : S ! RD, where D indicates the dimension of the feature space.

R(s) = ŵ
T
�(s) (3.4)

The total reward for a trajectory is the sum of its state rewards.

R(⇠) =
X

si2⇠

ŵ
T
�(si) (3.5)

We define the reward space R as a discrete set of fixed weight vectors, which parameterize

a reward function. The discrete set W contains all possible values for a single element in

the weight vector. The number of possible weight vectors is therefore represented by the

cardinality of W raised to the dimension of the feature space, |R| = |W|
D. The reward

space R should contain values representative of the number of features and their scaled

differences. At a minimum, |W| should be equal to D, so that each feature may be assigned

a distinct value, representing the preference over features. However, to enable a reward

model to consider the scaled reward difference, such as “water is 10 times worse than grass,”

24
a larger or non uniformly spaced set of values can be specified to capture such preference.

The training time of the model increases as |R| and |S| increase, so it is important to

choose a value of |R| relative to the complexity of the domain. The posterior is computed

at |R| discrete points to obtain a nominal probability for each point. These nominal points

are subsequently divided by their marginal probability producing a valid discrete posterior

distribution.

Alternatively, with the use of Markov Chain Monte Carlo [5], a continuous posterior

over reward functions can be obtained, allowing one to model an infinite number of reward

functions. However, this requires numerically approximating integrals, adding computational

complexity during training. Furthermore, in the context of our weight selection technique

(Section 3.3.5), a continuous posterior would require using differential entropy, which is

difficult to interpret [53]. Due to these limitations and the performance achieved with a

small number of reward functions (Section 3.4.3), we chose the discretization approach.

3.3.3 Likelihood Modeling

The likelihood of a demonstrator assuming independent and identically distributed trajec-

tories is defined as the product of the individual trajectories.

P (D|ŵ) = P (⇠1|ŵ)⇥ P (⇠2|ŵ)⇥ ...⇥ P (⇠n|ŵ)

=
Y

⇠i2D

P (⇠i|ŵ)
(3.6)

More specifically, we model the demonstrator using the maximum entropy IRL distribution

[96].

P (D|ŵ) /
Y

⇠i2D

exp (�ŵTE[�(⇠i)|⇠i ⇠ P (⇠i|ŵ)]) (3.7)

25
where � 2 [0, 1] represents the level of confidence in a demonstrator. � = 0 indicates low

confidence, such as random behavior from a demonstrator, while � = 1 indicates optimal

behavior with respect to the reward preference over features. The expected feature count is

high when a trajectory ⇠i obtains high rewards for a given robot model P (⇠|ŵ) relative to

all other trajectories and vice versa, as represented by the dot product between weights and

the expected feature count. Therefore, an increase in the reward increases a weight vector’s

desirability, quantifying a preference over features with respect to D.

The feature expectation of all demonstrated trajectories is:

E[�(⇠)] =
X

⇠i2⇠

P (⇠i|ŵ)�(⇠i) (3.8)

Where ⇠ represents the set of all possible trajectories that can be taken in the MDP.

Although several candidate robot models may be suitable [37], we use maximum entropy

IRL [96], which also contains an algorithm to compute Eq. (3.8).

P (⇠|ŵ) =
exp(ŵT

�(⇠))

Z(⇠)
(3.9)

Calculating the feature expectation directly is infeasible because it requires an agent to

consider all possible trajectories in the MDP, as captured in the normalization constant

Z(⇠). However, this can be approximated by using either the forward backward algorithm

or value iteration [95].

3.3.4 Prior Modeling

There are multiple ways to incorporate prior information about reward weights, P (ŵ). For

our work, we chose a modified uniform prior as an uninformative prior, and a Dirichlet prior

as an informative prior.

26
If a demonstrator does not prefer any one weight paramaterization, a uniform prior may

be used. However, if a reward function has all the same weights for each feature, any set of

demonstrations appear Boltzmann optimal [57]. Therefore, we use a modified version of the

discrete uniform prior, where all weight sets have equal probability unless all its weights are

the same, in which case its probability is zero.

P (ŵ) =

8
>><

>>:

0 if, ŵ1 = ŵ2 = ... = ŵn

1
|R|�|W| otherwise

(3.10)

Each element in the weight vector ŵ above takes a value from the discrete set W .

In some cases, a preference over terrains is known a priori, and therefore can be captured

by a Dirichlet prior, a continuous multivariate generalization of the beta distribution

P (ŵ) =
1

Beta(↵)

DY

i=1

ŵ
↵i�1
i 8i, 1 < ↵i (3.11)

such that ↵ 2 RD
+ where each ↵i represents our preference over a corresponding feature weight

wi. The higher the ↵i, the more density the component possesses. That is, a large value of

↵i, corresponds to preference over all other components j for which ↵i > ↵j is true. The

Dirichlet distribution is subject to the constraint
P|W|

i=1 wi = 1. To satisfy this constraint, a

softmax function is applied to the current weight vector, producing normalized weights.

ŵi
exp(ŵi)P|W|
j=1 exp(ŵj)

(3.12)

In the Dirichlet prior, ŵ is assumed to be continuous, while in Sec. (3.3.1) we have defined

it to be discrete. However, a proper prior is obtained as a result of applying Eq. (3.12) to a

given weight vector before obtaining the result in Eq. (3.11).

27

3.3.5 Planning Risk Averse Behavior

A Bayesian posterior is obtained by evaluating Eq. (3.3) for |R| different reward vectors. A

point evaluation is obtained by multiplying the likelihood (Eq. (3.7)) and a prior (Eq. (3.11))

or (Eq. (3.10)) for each reward function in R. Then, a normalization constant is computed by

taking the sum of the point products. The system designer can then quantify uncertainty over

ŵ. Uncertainty is expressed as the normalized Shannon entropy of the marginal probability

distribution of each feature weight ŵi 2 ŵ. The marginal probability is calculated by holding

the weight being marginalized constant and summing over all possible values of the other

n� 1 variates.

pwi(k) =
X

8ŵj2ŵ|ŵj 6=ŵi, ŵj2|W|

P (w1, . . . , wi = k, . . . , wn) (3.13)

Uncertainty is defined according to each individual feature, since each corresponds to a

distinct semantic meaning. The overall uncertainty of each marginal distribution is quantified

by the normalized Shannon entropy

H(wi) = �

P|R|
k=1 pwi(wk) log2 pwi(wk)

log2 |R|
(3.14)

yielding a value in the interval [0, 1]. An entropy of 0 indicates certainty in the weight’s

value, and a value of 1 represents maximum uncertainty, the uniform distribution. Weights

are then chosen by their respective uncertainty using a specified level of acceptable risk, ✏,

where smaller values of ✏ indicate greater risk acceptance. When the entropy is greater than

or equal to the threshold, H(wi) � 1� ✏, the lowest reward weight is chosen. Otherwise, if

H(wi) < 1� ✏, the expected value E[wi] of the marginal distribution is chosen as the reward

weight.

The weights of the linear reward function are then used to produce a costmap for a

28
navigation planning algorithm. Costmap generation is a simple dot product between the

reward weight vector and the environment feature maps (discussed in Section 3.4.2). To

assess model performance, we express risk as the percentage of time the robot traversed a

potentially dangerous terrain, �, throughout its trajectory,

Risk(⇠) =
X

si2⇠

�si

|⇠|
(3.15)

where |⇠| represents the length of the trajectory and �si is an indicator function returning 1

when �(si) contains the dangerous feature � and 0 otherwise. Assuming the unseen terrain’s

true reward is low or even negative, lower risk values should be correlated with the robot’s

safety.

Since risk alone is not a sufficient metric, we assess the overall performance as the tradeoff

between risk and path length because longer paths tend to correspond with increased energy

use and time to complete a mission.

29

3.4 Evaluation

This section evaluates RABRL in a 3-D simulated environment for an autonomous navigation

task using a ground robot equipped with virtual sensors.

3.4.1 Experiment Overview

Figure 3.2: Birds-eye view of test scenarios in the simulated environment. Terrain
colors are as follows: green corresponds to grass, brown to mud, and gray to asphalt.

All experiments were performed in a simulated 3-D Unity environment that represents a

semi-structured village containing three terrain types describing our features, �, namely

grass, asphalt and mud, as well as several obstacles, including buildings, trees, and vehicles.

Fig. 3.2 provides a birds-eye view of the three terrain types and buildings in the environment.

This simulated environment possesses greater complexity than the toy illustration shown in

30
Fig. 3.1, including: (i) noisy demonstrations due to imperfect perception and mapping, and

(ii) the requirement to plan kinematically feasible trajectories.

To facilitate objective comparison, each reward model learning approach was trained

with the same set of demonstrations, which were collected by having a human teleoperate

the robot in an area of the simulated environment. When collecting these trajectories,

the demonstrator stayed almost entirely on asphalt, in an attempt to show the robot their

preference for driving on roads instead of grass. To showcase how the approaches handle

learning from training data that lacks a full representation of the operating environment,

demonstrations were collected in an area where no mud was present, thereby setting � to

correspond to the mud feature. This methodology encompasses a number of real-world

situations, including applications where training data cannot be collected in the precise

operational environment or where there is significant time lapse or adverse weather conditions

that cause an environment to change relative to the time at which training data was collected.

Three different reward models were trained, including (i) RABRL with a uninformed

uniform prior, (ii) RABRL with an informed Dirichlet prior, and (iii) Maximum Entropy

IRL [81], which serves as a baseline towards learning semantic terrain rewards from human

demonstrations, since both approaches use Maximum Entropy as a robot model. Although

the risk aversion idea from Hadfield-Menell et al. [33] motivated this work, the methodology

described there seeks to resolve a given misspecified, partially defined reward function. As

mentioned previously, RABRL seeks to learn a reward function solely from a dataset of

demonstrations without ever being given a partially defined reward function, and is therefore

difficult to compare directly.

We compare performance of each method on the three test scenarios shown in Fig. 3.2.

To enable statistical analysis, including hypothesis testing, the robot started at the same

location for each combination of test scenario and reward model, navigating to the same

31
goal waypoint. Moreover, each combination of test scenario and reward model was run five

times to account for stochasticity from imperfect mapping. The percentage of the time the

robot went into the mud was calculated for each trajectory with Eq. (3.15). Evaluation

metrics are averaged across the five trial results.

3.4.2 Robotic Autonomy Stack

Figure 3.3: Simulated environment with Clearpath warthog running ROS equipped
with an array of virtual sensors.

A Clearpath Warthog equipped with an array of sensors including a 3D LiDAR, IMU, and

two monocular cameras (Fig. 3.3) was deployed for the simulations. The robot possesses a

full autonomy stack (Section 2.1) consisting of three main subsystems, namely mapping, per-

ception, and planning. We briefly describe these subsystems, discussing how our contribution

to risk-averse costmap generation interfaces with each of these subsystems.

The mapping subsystem is based on OmniMapper [77] and provides the necessary local-

ization for autonomous navigation. The map from this subsystem represents a costmap layer

for obstacle avoidance used by the planning subsystem. The risk-averse costmap acts as a

32
second layer that provides terrain-awareness to the planning system, enhancing the overall

navigation of the robot.

The perception subsystem includes semantic segmentation∗ of camera images for an on-

tology of terrain and object classes such as grass, asphalt, and building. As images are

segmented, the semantic label of each pixel is used to accumulate evidence for binary occu-

pancy terrain grids, which represent the semantic features, �, used for reward model learning

and risk-averse costmap generation.

As previously mentioned, the planning subsystem uses costmap layers generated from

mapping and our IRL algorithm to plan paths during navigation. Specifically, costmaps

serve as input to a global planner to search for the lowest-cost trajectory between the robot’s

location and a specified goal waypoint. In our system, global planning is computed with the

Search-Based Planning Library [46] to find a kinematically achievable plan by searching

combinations of motion primitives.

3.4.3 Results

The dataset of demonstrations was used to train three different reward models. If the robot

were to operate fully online, imperfections from all other subsystems (perception, SLAM,

mapping, and planning) would propagate. Therefore, to best capture the performance of the

proposed methodology, a robot collects a map of its environment a priori and then builds a

costmap with respect to the learned reward weights. However, the reward function obtained

from RABRL could be used to produce costmaps in an online setting.

For both of the RABRL reward models, Model (i) and (ii), a multivariate posterior was

obtained from Eq. (3.3). The confidence parameter was set to � = 0.3 to indicate relatively
∗For the experiments reported, we use the ground truth semantic segmentation produced by the simula-

tion.

33
low confidence in the optimality of the demonstrator and ✏ = 0.01 was used, resulting in a

threshold of 1� 0.01 = 0.99, indicating a relatively high tolerance to uncertainty.

The reward weight associated with a terrain was allowed to take on a value from the

set W = {�2, ..., 1}. yielding a reward space of 64 possible reward functions, since |W|
D =

43 = 64. This domain allowed each feature to be assigned a distinct value and also enabled

a modest amount of reward scaling, since |W| was one larger than D. For the maximum

entropy reward model, training was performed according to the reward model outlined in [81].

Table 3.1: Marginal Entropy

Reward Model Entropy - H(wi)

H(wgrass) H(wmud) H(wasphalt)

(i) RABRL Unifrom 0.974 0.981 4.366 ⇤ 10�14

(ii) RABRL Dirichlet 0.759 0.797 2.781 ⇤ 10�15

Table 3.1 shows the normalized Shannon entropy, as evaluated by Eq. (3.14), of each

marginal distribution obtained from Eq. (3.13) for each terrain. Table 3.1 indicates that the

normalized marginal entropy for mud was highest in both models, while the grass was second

highest because the human demonstrations attempted to avoid grass. However, both models

are virtually certain of the preference for asphalt, as indicated by an entropy level close to

zero. Moreover, the entropy of Model (i) was higher because it employed an uninformed

prior, whereas an informed prior, such as the Dirichlet prior in Model (ii), exhibited less

uncertainty over the reward weights for each terrain. If the risk acceptance parameter ✏

was larger, resulting in less tolerance for risk, the respective reward weights would change.

Specifically ✏ = 0.05 results in weights of �2 for both grass and mud in the uniform model,

thereby exemplifying the importance of an informed prior.

34

Table 3.2: Feature Weight Vectors

Reward Model Feature Weight
wgrass wmud wasphalt

(i) RABRL w/Uniform -0.258 -0.687 1.000
(ii) RABRL w/Dirichlet -0.687 -1.253 1.000
(iii) Maximum Entropy IRL -0.304 0.000 0.567

Table 3.2 shows the estimated reward weight vector ŵ = hgrass,mud, asphalti corre-

sponding to the terrain features, which was determined with the weight selection technique

described in Section 3.3.5. Model (iii) implicitly assigns the mud a reward weight of zero,

thereby indicating a preference for mud over grass. Since mud was never encountered during

training, its gradient during maximum likelihood optimization is always zero. Conversely,

Models (i) and (ii) prefer every other terrain more than mud due to its high uncertainty.

Table 3.3: Total Average Risk Taken

Reward Model Total Risk
T1 T2 T3

(i) RABRL w/Uniform 0.2090 0.0000 0.0000
(ii) RABRL w/Dirichlet 0.0617 0.0000 0.0000
(iii) Maximum Entropy IRL 0.3120 0.1724 0.8992

Table 3.3 shows the average risk, which was computed by averaging the values computed

with Eq. (3.15) from the five runs for each combination of test scenario and reward model.

Table 3.3 indicates that the proposed method, RABRL, achieved lower risk in each test

scenario and, in scenarios T2 and T3, the robot found a path to traverse which avoided

35
mud entirely. Moreover, Table 3.3 shows that, in T1, the informed Dirichlet prior (Model

(ii)) accumulated approximately one third of the risk of Uniform prior (Model (i)) and one

approximately one fifth of the risk of Maximum Entropy IRL (Model (iii)). Furthermore,

while the informed prior took less risk than its uninformative counterpart, scenarios T2 and

T3 show that it is also possible to avoid side effects with uninformative priors.

Figure 3.4: Trajectory for Test Scenario 2 (T2) generated using two reward models
with waypoint region (blue circle).Top: (i) RABRL w/ Uniform Bottom: (iii)
MaxEnt IRL

To further clarify the observations made in Table 3.3, Fig. 3.4 shows a birds eye view

of the trajectories taken by Models (i) and (iii) in T2. Model (iii) took a shorter path

traversing mud, while Model (i) took a longer path and never traversed mud. Therefore,

in certain scenarios RABRL was able to avoid negative side effects, which occur due to

distributional shift in environmental terrain.

36

Table 3.4: Average Path Length

Reward Model Test Scenario
T1 T2 T3

(i) RABRL w/Uniform 335.8 436.0 454.6
(ii) RABRL w/Dirichlet 343.4 431.0 492.6
(iii) Maximum Entropy IRL 327.0 267.2 465.0

Table 3.4 shows the average path length computed with the five runs on each combination

of test scenario and reward model. Table 3.4 indicates that Model (iii) took the shortest

path in Test Scenarios T1 and T2. However, the path lengths of Models (i) and (ii) were

competitive with Model (iii) in T1 and T2 took substantially more risk as noted in Fig. 3.4.

Thus, in some scenarios, RABRL is able to substantially lower or eliminate risk while pre-

serving a low path length. Moreover, in T3 Model (i) outperformed Model (iii) with respect

to both total average risk and path length.

Fig. 3.5 shows a scatter plot of the tradeoff between normalized risk (Eq. (3.15)) and

path length, include all five runs for each combination of test scenario and reward model. To

rigorously illustrate that RABRL reduced risk substantially, we performed a two means test

on the risk taken for pairs of models. For example, a two-tailed test with a null hypothesis of

equal risk in Models (ii) and (iii) was rejected in all three scenarios at the 99.95% confidence

level with p-values of 3.046034⇥ 10�8, 0.000449, and 1.122941⇥ 10�7 respectively, strongly

favoring RABRL. Furthermore, we performed a two means test on the path lengths for pairs

of models. In some cases, Model (iii) performed best, but in others the results were equivocal.

Specifically, a two-tailed test with a null hypothesis of equal path lengths in Models (ii) and

(iii) produced p-values of 0.247475, 1.334867 ⇥ 10�5, and 0.227629 for the three scenarios,

suggesting that the null hypothesis of equal path length could not be rejected at the 90% or

37

Figure 3.5: Tradeoff between risk and path length.

even 80% confidence level in Scenarios T1 and T3. Thus, while RABRL took a longer path

to avoid mud in T2 as was shown in Fig. 3.4, the lower risk taken by RABRL demonstrated

very strong statistical significance without a significant increase in path length in two of

three scenarios.

3.5 Conclusion

This chapter proposed a Bayesian technique to express the uncertainty over the semantic

terrain reward weights of a linear reward function obtained from a dataset of human demon-

strations. With the use of normalized Shannon Entropy, the relative uncertainty over reward

weights can be learned by considering a small space of reward functions. Experiments per-

formed in a simulated 3D environment showed that a robot may leverage its uncertainty over

38
semantic terrains to choose a trajectory with less risk. However, this may require longer tra-

jectories in some scenarios. Our proposed methodology, RABRL, enables an agent to avoid

potentially dangerous terrain, while operating in an altered training environment.

The proposed technique is a member of the growing class of imitation learning techniques,

which explicitly seek to avoid negative side effects that occur as a result of distributional

shift of operational environments. Safe semi- or unstructured ground autonomy is likely

to contain terrain scenarios never encountered during training. Rather than undertake the

infeasible task of attempting to capture such training data, a proactive approach to quan-

tify uncertainty will identify gaps in training data and adapt behavior appropriately. By

resolving ambiguities, implicit biases, and misspecifications in reward models obtained from

human demonstrations, robots will be able to make more informed decisions, leading to safer

behavior relative to their predecessors.

Chapter 4 Task 2 - Learning an Accurate Perception Representa-

tion of the Current Environment

4.1 Definitions

Definitions of commonly occurring terms in the chapter that follows is provided below.

Perception System - A subsystem within an autonomous system which takes in raw sensor

data as input, and outputs data products representing the overall understanding of the

current state of the world. This system often performs scene understanding tasks such as

object recognition and semantic segmentation.

Semantic - A noun that has a specific meaning. Such as the underlying terrains and objects

present in the robot’s operational environment.

Segment - A particular area/region of adjacent pixels within an image; normally all pixels

in a segment capture the same characteristic; does not signify semantic meaning on its own.

Semantic Segment - A segment drawn around a specific semantic. Such as a shape drawn

around all of the pixels in the image for a particular object or ground terrain.

Representation - A set of vectors capturing the feature basis for a sequence of images.

Each vector contains the same number of dimensions and is referred to as a "feature vector".

Label (unsupervised learning) - A label gives clusters a name so they can be referenced.

Although each label is a "semantic label" in the context of semantic segmentation, each label

likely does not have a clear semantic meaning in unsupervised learning.

Terrain Projection System - A subsystem which consumes labeled segmented images as

input, and produces a set of one-hot occupancy grid maps as output. This is done via a

pinhole camera model which projects pixels of an image to the robot’s ground plane with

respect to the robot’s current pose.

Traversal Evidence - Numerical feature counts, counting the number of times each label is

39

40
traversed (driven) over during a robot’s trajectory. This is obtained by imposing the robot’s

trajectory over its global map and counting grid cells in the occupancy grid maps which

intersect with the robot’s trajectory.

4.2 Abstract

Rapid progress has been made in terrain-aware autonomous ground navigation, in part due to

advances in visual perception, specifically supervised semantic segmentation. However, such

approaches require expensive data collection and time-consuming ground truth labeling to

train deep learning architectures. Moreover, some applications may require the autonomous

vehicle to navigate in unseen, unstructured environments with competing ground terrains,

of which no labeled dataset exists. To circumvent the need to perform dense pixel-wise

labeling in a new environment for supervised learning, we consider how to leverage hu-

man demonstrations and unsupervised learning to quickly deploy a perception system for

terrain-aware navigation. Specifically, this paper introduces a technique that uses minimal

demonstration evidence as a weak supervisory signal to refine and align learned abstract

concepts from unsupervised semantic segmentation to fine-grained terrain semantics. The

presented methodology alleviates over-segmentation produced by the unsupervised approach

and yields a refined feature representation which maps to the set of semantic classes found

in the operating environment. We demonstrate the applicability of the methodology using

both an over-segmentation simulator utilizing a 3D graphics engine, and the RUGD dataset,

in which an initial over-segmented unsupervised semantic segmentation model is refined

to learn a more accurate representation of the underlying environment, thereby enabling

terrain-aware autonomous navigation.

41

4.3 Introduction

Figure 4.1: A visual representation of the proposed algorithm. Left: Sequence of
steps to obtain an initial unsupervised semantic segmentation model which over-
segments. Right: Sequence of steps which use human demonstrations as a weak
supervisory signal to provide evidence for abstract label refinement and mapping
to semantic labels.

Safety is critical if autonomous navigation is going to be adopted for mainstream use. In

structured settings such as urban city navigation, the awareness of lane markings, pedestri-

ans, and street signs are some examples of the context needed for an autonomous vehicle

to make safe navigation decisions. Recent advances in autonomous vehicle perception [78],

specifically supervised semantic segmentation [29, 43], provide fine-grained context of the en-

vironment by classifying each pixel in an image using a discrete class set. These supervised

approaches achieve high performance when they are trained with large labeled datasets [27,

32].

However, application spaces such as humanitarian assistance and disaster relief [55, 56],

require operation in semi-structured or unstructured environments. In these domains, au-

tonomous vehicle safety is highly dependent on the capability to robustly traverse complex

terrain. Unfortunately, existing datasets representing structured environments lack the ter-

rain diversity seen in unstructured settings. Although some datasets have recently emerged

42
that represent off-road environments with more terrain diversity and natural environmen-

tal constraints [82, 39], supervised semantic segmentation approaches will always be limited

by the availability of such datasets and the ground truth labels associated with them. For

application spaces with extreme uncertainty in environment conditions where all possible

future semantics are not known a pirori, supervised perception systems may not adequately

provide the context needed for safe navigation.

In contrast, unsupervised semantic segmentation approaches learn semantic concept rep-

resentations from unlabeled data. Without a supervisory signal, the unsupervised algorithm

must determine the appropriate granularity of segmentation. To lessen this challenge, some

approaches [38, 16] assume the number of classes within the data is known a priori to provide

a weak signal during the learning stage. With this information, the approaches can take a

large batch of unlabeled data and identify the underlying class representations. However, in

scenarios where an autonomous vehicle is required to act in an unseen environment without

sufficient time to collect (much less label) large domain-specific datasets, it is beneficial to

have the capability of both (i) identifying an appropriate number of discrete semantic classes

while also (ii) learning a representation of the current operational environment offline with

a small amount of unlabeled data to avoid the risk of total mission failure.

Stream-based unsupervised semantic segmentation approaches [88, 80] have the ability

to process data in an online fashion without making any underlying assumptions about the

number of concepts that will be present in the environment. This makes them ideal for

online operation under an open-world paradigm [62], i.e., where novel concepts not repre-

sented by the perception system can be encountered at any time during operation. However,

such approaches have not been deployed to support visual perception for autonomous nav-

igation because they often produce under or over-segmented representations relative to the

goals of the perception system as no supervisory signal is present. As illustrated in fig-

43

Figure 4.2: Segmentation at different levels of granularity. Column 1 - raw im-
age; column 2 - example of under-segmentation; column 3 - example of perfect
segmentation; column 4 - example of over-segmentation.

ure 4.2, under-segmented representations fail to identify all semantic concepts (column 2),

while over-segmented representations obtain more labels then there are semantic concepts

(column 4). Furthermore, the desired level of segmentation is dependent on the context of

the mission’s one would like to complete. Under-segmented representations do not contain

the context needed, while over-segmented models offer too much context. We seek to ad-

dress these shortcomings of stream-based unsupervised semantic segmentation using limited

human demonstration effort as a weak supervisory signal to refine a set of labels that can

be used for terrain-aware autonomous navigation. Specifically, as many stream-based seg-

mentation algorithms often over-segment more then they under-segment [80], the proposed

methodology seeks to alleviate over-segmentation by (i) identifying and discarding labels

which classify multiple semantics, while (ii) over-segmented labels are merged together and

mapped directly to semantic concepts.

Specifically, this chapter focuses on enabling an autonomous vehicle to perceive environ-

mental terrains in an open-world setting using two forms of data (i) a sequence of unlabeled

images, and (ii) human demonstrations with a single semantic label identifier. Unlabeled

images are collected and segmented in an online fashion, i.e., frame by frame, as the vehicle

44
moves throughout the environment. Human demonstrations take the form of a teleoperated

trajectory over a single terrain type in the environment. The (over)-segmented images are

mapped to the trajectory demonstrations, where we reason about the demonstration evi-

dence to assign semantic terrain labels to the unsupervised segmentation output. Fig. 4.1

provides a high level overview of the proposed algorithm resulting in two main steps. In step

1, an initial unsupervised segmentation model is trained online using a stream of unlabeled

images, producing an initial label set. In step 2, the label set is refined using human demon-

strations, reducing the number of overall labels while directly mapping labels with traversal

evidence to semantic concepts. The final output is a refined unsupervised semantic segmen-

tation representation and label set capable of classifying unstructured terrains which may

act as a perception subsystem for robotic applications. This chapter’s primary contribution

is the evidence-based reasoning that supports the refinement of the unsupervised output,

where a set of abstract labels are refined to reduce over-segmentation.

Similar navigation based approaches estimate terrain traversability directly[70, 40]. Our

work differs in that rather than estimate traversability, we obtain a perception model which

classifies semantic terrains present in the environment. This type of system decouples

key functionality for autonomous traversal- rather than simultaneously classify and rank

traversability, by only classifying terrains, subsequent systems can focus on the costs/rewards

over terrain, as seen in Section 4.7. Moreover, this perception model is not coupled to any

specific path planner, and therefore any path planner which utilizes semantic occupancy

grids may be used.

The remainder of the chapter is organized as follows. Section 4.4 (i) introduces the

stream-based unsupervised segmentation algorithm chosen for this study, Unsupervised Se-

mantic Scene Labeling [80], and (ii) presents a methodology to refine a large set of over

and under-segmented abstract labels to a smaller set of high-level semantic labels. Sec-

45
tion 4.5 (i) presents a framework to simulate over-segmentation in a 3D game engine, and

(ii) utilizes the framework in a set of simulated robotic experiments to demonstrate the

chapter’s research claim that human demonstrations act as weak supervisory input capable

of alleviating over-segmentation. Section 4.6 evaluates the presented methodology’s perfor-

mance on a real world robotics dataset, namely, the Robot Unstructured Ground Driving

(RUGD) dataset [82]. Section 4.7 evaluates autonomous navigation capability using a refined

perception model obtained from the presented methodology as the reward basis for inverse

reinforcement learning. And lastly, section 4.8 concludes with a brief summary and identifies

opportunities for future extensions.

4.4 Methodology

Our proposed solution to provide terrain-aware perception for autonomous navigation in a

weakly supervised manner is composed of two stages (depicted in Fig. 4.1). First, we identify

a representation of visual concepts in the environment using stream-based unsupervised

segmentation. The concepts from this stage are abstract in that they have not been aligned

to a high level semantic that the autonomous vehicle can use for decision making. Second,

a limited number of human demonstrations are correlated with the unsupervised abstract

concepts to refine (e.g., improve over-segmentation) and align these segments to high level

semantics. Details of each stages are provided in the subsequent subsections.

4.4.1 Stage 1: Stream-based Unsupervised Segmentation

The first stage of our pipeline relies on an unsupervised stream-based segmentation algorithm

to learn an initial set of segments that represent abstract classes. We refer to these as abstract

classes because up to this point there is no supervisory signal to map these learned segment

representations to a high-level semantic label. Although any unsupervised stream-based

46

Figure 4.3: Example of oversegmentation output from USSL in a simulated un-
structured outdoor environment with three classes, road, grass, and sky. Left: Raw
camera image. Center: USSL model output. Right: Ground truth segmentation.
Note that the segment colors between USSL and the ground truth do not corre-
spond since the USSL output is generated from unlabeled data and is not tied to
specific semantics.

segmentation algorithm could be leveraged in the first stage of our pipeline, we use the

Unsupervised Semantic Scene Labeling (USSL) [80] algorithm.

USSL is an ensemble-based approach that agglomeratively clusters superpixels from im-

ages to automatically learn the number of visual concepts within a data stream. Creation

of an ensemble is achieved by extracting visual features on overlapping sliding windows of

the data stream, referred to as local modeling. We use a combination of visual features

including, average color, color histograms, and local binary patterns. USSL encodes the

segmentation evidence across the overlapping local models in a graph structure and extracts

the connected components to generate a global set of abstract output labels for the entire

stream, M = m1,m2, ...,mn. Additional details on the USSL algorithm can be found in

the accompanying appendix to this chapter (Section 4.9), which summarizes the original

publication [80].

As previously mentioned, the output of stream-based unsupervised segmentation algo-

rithms is often over-segmented. Fig. 4.3 shows example output from USSL. Over-segmentation

47
can be seen across nearly all visual classes in the image. For example, sky is represented

by segments colored in blue, green and brown and road is represented by segments colored

in orange, cyan, purple and navy. Now, although the over-segmentation of sky could be

capturing details such as the different types of clouds, this is not relevant for the task at

hand- the navigation of ground terrains. Stage two of our pipeline refines this output to

produce a perception model that provides high-level semantic segmentation output similar

to supervised models but without ground truth annotations.

4.4.2 Stage 2: Terrain Inference From Human Demonstration

Next, we describe how the unsupervised abstract labels, M , from stage one are refined to

reduce over-segmentation and aligned to the terrains present using minimal human demon-

stration effort.

Algorithm Overview: We refer to the set of semantic terrains in an environment

as � = {�1,�2, . . .�k}. These are not assumed to be known by the algorithm in stage

one, but the human providing demonstrations is aware of them. Demonstrations are col-

lected by teleoperating a robot across a single terrain, �j. A demonstration is represented

by the stream of images, Sj = {I1, I2, ..., In}, captured from the onboard camera during

traversal and the trajectory, ⇠j, that captures the robot’s poses sequentially throughout

time. Via tele-operation, a set of demonstrations (minimum one per terrain required),

D = {(S1, ⇠1), (S2, ⇠2) . . . (Sk, ⇠k)} can be quickly collected.

Given the demonstration dataset, D, we can reason about the terrain semantics for

abstract classes in M as follows: 1) Use the initial label set M to classify pixels from

each image in Sj. 2) Project resulting perception information onto a map with the same

reference frame as the robot’s trajectory, ⇠j. 3) Accumulate the evidence of each terrain

type in � being associated with each abstract label in M by evaluating how often each

demonstration traversed through each abstract label. 4) Identify conflicting evidence caused

48
by noise from the unsupervised stream-based segmentation in which one label is classifying

multiple semantics and discard them. 5) Map the remaining abstract labels directly to

semantic terrains by assigning each abstract label to the terrain with the most traversal

evidence. If multiple abstract labels map to the same semantic, merge their underlying

feature representations. In the case where an abstract label does not have any traversal

evidence, keep it in the representation, but do not semantically map it to any terrains.

Overall, the discarding, assignment/merging, and keeping of abstract labels results in the

refinement of the underlying representation, which can improve the overall perception.

Step 1: Unsupervised Segmentation & Classification: We use a simple near-

est neighbor classifier to assign unsupervised labels to all pixels within the images from a

demonstration’s image stream. As noted previously, each label within initial label set M is

represented by a N dimensional feature vector. First, a set of superpixels is generated for

each image Ij within the demonstration’s image stream. Then, using the same feature ex-

tractors that were used to train M , a feature vector of dimension N describing the superpixel

is obtained. Lastly, each superpixel is matched to the closest label within M as measured

by it’s L2 (Euclidean) distance, resulting in the final unsupervised label classification.

49

Figure 4.4: Example of simulated over-segmented terrain output. The robot starts
at the green hexagon, and follows the red trajectory up until the blue star. During
the lifetime of the robot’s trajectory, it traverses 3 main terrains as indicated by
the hatch marks- road, grass, and gravel. The sub-trajectories within each hatch
mark predominately traverse over a particular set of unsupervised labels which
are projected onto the robot map from the generated unsupervised segmentation
images. Namely road (blue, orange), grass (yellow, dark purple), and gravel (tan,
light purple, green). Traversed labels provide evidence for label refinement.

50
Step 2: Terrain Projection: Classified images from the demonstration data stream are

then paired with their corresponding robot pose in the global reference frame of the robot’s

trajectory during teleoperaton and are projected onto the robot’s global map (represented by

an N by N grid). Fig. 4.4 shows an example of the projected perception map obtained when

traversing the environment from a camera based pinhole camera model terrain projection

system contained within the ROS autonomy stack. In this illustration, the robot’s trajectory

starts at the green hexagon in the top left of the image, follows the red path, and ends up in

the bottom left of the image at the blue star. Colors around the demonstration trajectory

correspond to pixels being projected from the classified images, specifically each label within

the initial unsupervised label set capturing terrain features M is assigned a unique color

identifier ∗. Following the robot trajectory, notice the black hatch marks, these are sub-

trajectories where the major terrain being traversed changes- initially the robot is traversing

road up until the first hatch mark, where it traverses grass up until the next hatch mark,

and finally traverses gravel until the trajectory is completed. Within each sub-trajectory,

the labels traversed over in the map output by the terrain projection system change. The

robot is mostly traversing the two labels in M represented by orange and blue in the first

region, the two labels represented by yellow and dark purple in the second, and the three

labels represented by light purple, tan, and dark green in the third. Using the projected

perception map alongside the robot’s trajectory in the same reference frame, we can count

how often trajectory ⇠j moves through each class in M and use this as evidence to reduce over-

segmentation. Lastly, rather than a particular (x, y) grid cell in the projected perception map

being marked as a distinct label disjoint from the set of possible labels, every grid cell may

contain multiple labels. The reason for this is twofold: (i) Multiple contrasting superpixels

may classify pixels which project to the same grid cell, and (ii) sequential classified frames
∗Note that in the first and third regions, other colors appear on the side of the robot, this is because

there is grass alongside the road and gravel in this particular operational environment.

51
project on a subset of grid cells with previous frames and as a result each grid cell is projected

on multiple times.

Step 3: Evidence Accumulation: Grid cells within the projected map and the un-

derlying labels the robot traversed provide a weakly supervised signal, which we refer to as

traversal evidence. This evidence is used to define the context required to complete the au-

tonomous task by: (i) identifying models using the same label to classify two distinct terrains,

what we refer to as noise, and (ii) identifying labels to be merged due to over-segmentation.

To accumulate terrain label evidence we count the number of times a trajectory state, si,

intersects with the abstract classes in M . Each si maps to a grid cell in the projected per-

ception map. Recall that it is possible for a grid cell to be associated with multiple labels

from M so a trajectory state may provide evidence for more than one abstract label class.

Thus, the evidence that abstract class, m, could represent terrain class � given trajectory ⇠

is represented as:

evidence(m) =
X

8si2⇠

1(m \ si) (4.1)

where 1 is an indicator function that determines if a label class and trajectory state fall into

the same grid cell. After computing evidence(m) for all labels for each trajectory in the

demonstration dataset for a particular terrain �, each element is normalized as follows:

�(m) =
evidence(m)

P|M |
j=1 evidence(mj)

(4.2)

yielding a value in the range [0� 1].

Step 4: Identifying Conflicting Evidence: After measuring the evidence for each

unsupervised label across all terrains, certain labels may overlap. That is, certain labels

may have non-zero traversal counts across multiple demonstrations across different terrains.

This is referred to as label noise, labels with high amounts of overlap are considered noisy

52
as that label is unable to accurately predict terrains distinctly. Some reasons label noise

may occur includes: poor feature extraction techniques, poor learned representations, and

data complexity (highly dimensional, complex scenes, lighting and occlusion). Consequently,

Since noisy labels lead to high amounts of overlap, we quantify the "noisiness" using entropy.

Specifically, for each abstract label m the normalized Shannon entropy is calculated over a

vector ⇢ =< �(m)�1 , �(m)�2 , ..., �(m)�k
>, capturing overlap evidence across all demonstra-

tions:

H(⇢) =
�
P|⇢|

m=1 ⇢m log2 ⇢m
log2 |⇢|

(4.3)

yielding a value in the range [0� 1]. Large amounts of overlap across all terrains results in

entropy values close to 1 while no overlap results in entropy values of 0, thereby quantifying

how often a label is traversed across multiple terrains (semantics). Labels with high entropy

are considered noisy, and such labels should be discarded from the model since they will

provide bad classification results if kept. On the contrary, label noise may also simply occur

due to misclassification, therefore some level of noise is to be expected. In order to balance the

tradeoff between acceptable and unacceptable levels of noise, the threshold value ✏ captures

the amount of acceptable risk. Therefore, the initial set of models in M are trimmed based

on the specified threshold value ✏. For each m 2M , if H(⇢) is over ✏ the model is discarded,

otherwise it is kept. The chosen value of ✏ depends on the amount of misclassification the

system designers believe is acceptable, and may be determined by evaluating the models

acceptable misclassification rate that still leads to overall mission success.

Step 5: Label Assignment and Terrain Representation: The remaining m 2 M

after discarding those with high entropy which have non-zero traversal evidence are used to

reason about semantic terrain label assignment. Each m 2 M is mapped to the terrain �

53
with the most evidence:

⌧(m) := argmax
8�2�

�(m) (4.4)

Finally, the set of feature vectors, T , for all abstract labels assigned to the same terrain

�i are merged into a representation for the terrain. Specifically, a weighted average of the

feature vectors is taken to represent this high level semantic:

�̂i(T) =

P|T |
i=1 L2(Ti, argmax (T)) ⇤ TiP|T |

i=1 Ti

(4.5)

Labels in M that do not contain any traversal evidence, are not mapped to a terrain and

their underlying feature representation is unaltered.

After the label assignment is complete, a new set of class models exists which represents

a combination of semantic terrain labels and a set of unsupervised abstract labels. Although

the set of remaining unsupervised abstract labels does not provide semantic meaning for the

navigation task, these learned concepts may still be valuable because they are representing

something our sparse supervisory signal could not help explain. This includes semantics

where it is not possible to have traversal evidence, such as the sky, or obstacles. To conclude,

the resulting hybrid set of labels can then be used to produce perception output for an

autonomous vehicle for terrain-aware navigation.

54

4.5 Evaluation - Simulation

4.5.1 Overview

This section evaluates the impact of terrain evidence obtained from human demonstrations to

refine a perception representation. Namely we evaluate two main properties, (i) the ability

to identify and merge over-segmented labels to produce a refined representation, and (ii)

the ability to identify and discard poor representations. This is done by replacing stage 1

(Sec. 4.4.1) with a 3D graphics engine which simulates over-segmentation in the perception

system. Over-segmentation is simulated agnostically by utilizing ground truth semantic

segmentation images provided automatically for all camera frames in the simulator. This

experiment setup enables us to test the methodology alone, without any influence of the

chosen unsupervised perception algorithm. As a result, this experiment demonstrates the

theoretical best case performance achievable. Thereby answering the question on whether or

not human demonstrations can be used as a weak supervisory signal to refine an unsupervised

perception model.

4.5.2 Perception Simulation

A simulator is constructed to capture common sources of error found in unsupervised seman-

tic segmentation algorithms. Namely, (i) noisy labels with poor interclass performance and

thereby fail to reliably classify a single semantic, (ii) over-segmented representations which

fail to cluster/merge intraclass labels representing the same semantic, and (iii) misclassifi-

cation errors where segments are incorrectly labeled. First the simulation’s design and how

each error source is simulated is presented. Followed by an outline of subsequent experiments

to follow in this section.

55

Fi
gu

re
4.

5:
A

rc
hi

te
ct

ur
e

di
ag

ra
m

of
th

e
ov

er
-s

eg
m

en
ta

tio
n

sim
ul

at
or

.
O

ve
r-

se
gm

en
te

d
im

ag
es

ar
e

ge
ne

ra
te

d
us

in
g

gr
ou

nd
tr

ut
h

se
m

an
tic

se
gm

en
ta

tio
n

im
ag

es
av

ai
la

bl
e

in
th

e
sim

ul
at

io
n.

Fi
rs

t,
th

e
gr

ou
nd

tr
ut

h
im

ag
e

is
se

gm
en

te
d

in
to

SL
IC

su
pe

rp
ix

el
s.

E
ac

h
su

pe
rp

ix
el

is
th

en
as

sig
ne

d
an

un
su

pe
rv

ise
d

la
be

ld
ep

en
de

nt
on

re
su

lt
of

th
e

co
m

pu
ta

tio
na

lg
ra

ph
sim

ul
at

in
g

th
re

e
so

ur
ce

s
of

er
ro

r
co

m
m

on
ly

fo
un

d
in

un
su

pe
rv

ise
d

se
gm

en
ta

tio
n

al
go

rit
hm

s.
T

he
re

su
lti

ng
st

re
am

of
ov

er
-s

eg
m

en
te

d
im

ag
es

is
us

ed
as

a
re

pr
es

en
ta

tiv
e

sim
ul

at
or

of
a

st
re

am
ba

se
d

un
su

pe
rv

ise
d

se
gm

en
ta

tio
n

m
od

el
.

56
3D Graphics Engine: Perception simulation is enabled by the unity 3D graphics engine

in which a ClearPath Warthog wheeled mobile robot is operating in a semi-structured out-

door environment. The graphics engine provides both raw image output and ground truth

semantic segmentation images at 30 frames per second from the viewpoint of the robot’s

cameras. Specifically, the graphics engine produces ground truth images using six seman-

tic labels- grass, gravel, road, sky, building, and unlabeled. The simulated robot runs the

autonomous system software stack based on Robot Operating System (ROS) as outlined in

Chapter 2.1.

Figure 4.6: Illustration of the different sources of error commonly found in unsu-
pervised perception algorithms alongside the ground truth (column 4). A noisy
model contains label(s) classifying over multiple semantics (column 1; yellow, or-
ange). Over-segmented models learn more labels than there are semantics (column
2; olive, burgundy). Misclassification of semantics occurs due to poor model per-
formance (column 3; lime green).

Error (i)- noisy labels (Figure 4.6, column 1): After learning, labels may be

present in the representation which contain noise. A noisy label has high interclass similarity-

commonly classifying many segments spanning multiple semantic classes (see the yellow and

orange labels in Figure 4.6 which are both classifying grass and road with the same label).

Such labels worsen the quality of the perception system and therefore should be discarded.

Although noisy labels can be thought of as misclassification, they are distinct in that rather

than the label mostly classifying one class and occasionally misclassifying as others, noisy

57
labels commonly misclassify across all classes almost uniformly. We simulate this with a

Bernoulli distribution which is sampled for each superpixel. If the trial is a success, the

superpixel is classified from the set of ground truth labels. Conversely, if the trial is a

failure, the superpixel is classified from a set of over-segmented labels containing noise. As

a result, this formulation enables both interclass, and intraclass variability among labels.

Error (ii)- over-segmentation (Figure 4.6, column 2): Since several unsupervised

algorithms are based on clustering techniques, the number of clusters (labels) often does not

match the number of semantics in the scene because there is often no supervisory signal.

There may be high intraclass similarity, as seen in the top half of the image in Figure 4.6 col-

umn 2 where the olive, burgundy, and dark pink labels are all classifying the same semantic,

sky. If the number of labels learned is too low, it is called under-segmentation, conversely if it

is too high, it is called over-segmentation. There is a tradeoff between over-segmentation and

under-segmentation. Over-segmented representations provide a large, often complicated (no

clear semantic meaning to humans) feature basis that explains the current operational envi-

ronment. Under-segmented representations provide a small, limited feature basis which fails

to distinctly classify key properties in an image. We explicitly simulate over-segmentation

and focus on over-segmentation, as it is the primary problem the methodology aims to solve.

Moreover, this is based on the philosophical viewpoint that it is better to have an over-

segmented model and then refine upwards, leading to fewer, than the other way around.

Mathematically, it is easier to merge labels together rather than create new ones.

For each ground truth semantic class, a discrete probability distribution is constructed

where the number of possible outcomes is determined by the desired number of possible over-

segmentation labels, denoted as the over-segmentation factor. The choice of distribution is up

to the experimenter, however we chose the binomial distribution B(n, p), where n represents

the over-segmentation factor, and p represents the bias towards certain over-segmented labels.

58
Moreover, the binomial distribution can be used to create "discrete normal" distributions in

which the mass of the distribution is distributed normally among the over-segmented labels.

As each ground truth label is represented by its own separate binomial distribution, each

may also have its own unique over-segmentation factor. Lastly, since each label is perfectly

contained relevant to its parent ground truth label, high intraclass similarity occurs. That

is, if a ground truth parent class has a high over-segmentation factor, there is high intraclass

variability, resulting in many unsupervised labels to segment off into their own distinct groups

even though they all belong to ground truth class.

Error (iii)- misclassification (Figure 4.6, column 3): It is well known that computer

vision based perception algorithms are not able to perfectly classify everything. Dependent

on the model architecture, and the training data used, classification performance varies

greatly. Furthermore, when a model does fail to classify, the model’s interclass performance

is often not uniform. A model may commonly misclassify one class for another (looking at

column 3 in Figure 4.6, notice how the green label incorrectly classifies road as grass). In

the machine learning community, this performance is captured in a confusion matrix. A

confusion matrix is a nxn matrix where n is equal to the number of possible classification

labels. On one dimension is the ground truth result, and the second, the model’s prediction.

The diagonal of this matrix captures accuracy to correctly classify its own class while other

members represent how certain labels misclassify one class for another.

This simulator takes in a confusion matrix as input to simulate misclassification. A

discrete probability distribution is constructed from the confusion matrix, and is sampled

in relation to the current ground truth label. In this setup, interclass variability is possible

at the misclassification step, and as a result, when misclassification is paired with error ii,

intraclass variability is also present.

59
Perception Simulation Workflow: Using ground truth semantic segmentation, the

perception errors aforementioned are simulated in a bottom up manner for each image in an

image stream as the robot is moving in its operational environment. A graphical overview

can be seen in Figure 4.5. First, the image is segmented into a set of superpixels. Each

superpixel is then assigned a final label as follows. A sample from a Bernoulli distribution

Ber(p) is taken. If the trial is a success, a subsequent sample is taken from a discrete

probability distribution where possible outcomes of the distribution represent ground truth

labels, and probabilities represent a perception models classification accuracy as defined by a

confusion matrix (error iii). Lastly a sample is taken from the ground truth label’s binomial

distribution B(n, p) to obtain the final unsupervised label (error ii). Note that the final

labels are unsupervised, and therefore do not have any semantic meaning. If the Bernoulli

trial is a failure, a sample is taken from a discrete uniform distribution, where its members

represent the set of labels classifying multiple semantics (error i).

Experiment Framework: The following framework is applied to all subsequent exper-

iments in this section, differing only on the parameters of the perception simulator. First,

an initial sequence of images are collected where the simulated robot traverses each major

semantic terrain present in the operational environment- grass, gravel, and road. Specifically,

subsequent experiments use a ROS bag containing 1646 sequential images over 53 seconds

(an overview of the robot’s trajectory can be seen in Figure 4.4). Since this data is collected

in a graphics engine, both raw images and their underlying ground truth is collected. Then,

using the perception simulator, every ground truth image is over-segmented according to

Figure 4.5. The resulting images are fed back into the graphics engine alongside a simulated

autonomous system ROS software stack.

As previously mentioned in Section 4.4.2, part of this stack contains a terrain projection

system which outputs a series of occupancy grid terrain maps from semantic images. The

60
resulting terrain maps are used as the traversal evidence acting as the input to Equation 4.1.

Following through with the rest of the subsequent methodology, a refined representation is

provided as output. The refined representation is then evaluated.

4.5.3 Experiment 1: Capability to identify and merge labels

In the first experiment, the methodology is evaluated on its ability to utilize traversal evi-

dence to refine an initial perception representation and attempt to alleviate error (ii); over-

segmentation. For this experiment, only over-segmentation is simulated, and therefore noisy

labels (error i), and misclassification (error iii) are not considered. This setup is chosen

to evaluate the theoretical maximum performance of the proposed methodology. If (i) the

set of class labels produced by the over-segmented model produces perfect segment bound-

aries, and (ii) each of its labels never misclassifies with respect to the ground truth, then by

utilizing resulting traversal evidence in the proposed methodology, the resulting representa-

tion should match the ground truth exactly. Now, although the assumptions are unrealistic

for real-world perception models, this experiment verifies if human traversal evidence can

produce a refined label set which maps to semantics present in the scene.

61

Figure 4.7: PMF of a Binomial distributon where n = 3 and p = 0.8

The six semantic classes- grass, gravel, road, sky, building, and unlabeled- are each

assigned a unique probability distribution for over-segmentation. Namely, each terrain (grass,

gravel, road) is given an over-segmentation factor of 4, while all other labels are given a value

of 1. Note that non-terrains are not given an over-segmentation factor because the proposed

methodology does not make use of that information when performing merging. Each terrain

follows a binomial distribution B(n, p) where n = 3 and p = 0.8, a visualization is depicted

in figure 4.7. This choice of p results in a biased distribution where the 2 of the 4 labels

take up most of the probability mass. This corresponds to real world behavior in relation

to unsupervised semantic segmentation models, where certain labels occur more frequently

than others when presented with the same semantic.

62
Experimental Results:

Traversal evidence for a given abstract label relative to the possible parent terrains is shown

in Table 4.1.

Table 4.1: Experiment 1. Traversal Evidence (feature counts)

Label Terrain

Grass Gravel Road

1 0 0 4

2 0 0 8

3 0 0 108

4 0 0 152

5 0 13 0

6 0 51 0

7 0 91 0

8 0 140 0

9 17 0 0

10 103 0 0

11 146 0 0

12 191 0 0

13 0 0 0

14 0 0 0

15 0 0 0

63
In this setup, labels 1-4 correspond to grass, 5-8 correspond to gravel, 9-12 correspond

to road, 13 to sky, 14 to building, and 15 to unlabeled. Figure 4.8 illustrates the robot’s

point of view with the future trajectory overlayed. As the robot moves through space on its

trajectory over the road, it traverses the blue, dark blue, and orange pixels, thereby collecting

traversal evidence for labels 10, 11, and 12. This traversal evidence informs label merging.

Figure 4.8: Experiment 1. Column 1: Raw image; Column 2: Illustration of the
robot’s unsupervised over-segmented image with it’s future trajectory (red) as it
traverses the road (orange, blue, dark blue). Column 3: Ground truth image.

As per the methodology, once traversal evidence is obtained, first the entropy for each

abstract label is calculated, and used to determine if any labels should be discarded, based

on the threshold parameter ✏ = 0.8. Since noisy labels (error i) and misclassification error

(error iii) are not present, there is no overlap (divergent evidence) among the over-segmented

labels in the resulting traversal evidence.

64

Table 4.2: Experiment 1. Abstract Label Entropy (1-8)

Abstract Label

1 2 3 4 5 6 7 8

Entropy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.3: Experiment 1. Abstract Label Entropy (9-15)

Abstract Label

9 10 11 12 13 14 15

Entropy 0.00 0.00 0.00 0.00 UNDEF UNDEF UNDEF

Table 4.2 and 4.3 shows entropy values (Equation 4.3) for each abstract label. Labels

1-12, which all correspond to terrains, have an entropy of 0.00, while 13-15 have undefined

entropies. These values are expected due to the parameters set for the over-segmentation

simulator, namely, there is no overlap since errors (i) and (iii) are not simulated. More-

over, note that a value of undefined for the entropy score means that no traversal evidence

was present for a particular label, which is consistent as 13-15 represent sky, obstacle, and

unlabeled. As a result of these entropy scores, no labels are discarded.

Next, each abstract label is mapped to the parent terrain for which it shares the most

evidence with. Utilizing the traversal evidence for each abstract label as seen in Table 4.1,

remaining labels are merged, resulting in a refined representation.

65

Table 4.4: Experiment 1. Quantity of labels

Ground Truth Class

Grass Gravel Road

Initial 4 4 4

Discarded 0 0 0

Semantically Mapped 4 4 4

Not Semantically Mapped 0 0 0

Total Label Quantity 1 1 1

As seen in Table 4.4 initially, the over-segmented model starts with 12 terrain labels-

4 for grass, 4 for gravel, 4 for road. After utilizing traversal evidence and the proposed

methodology, the refined model ends up with 3 labels, namely, 1 for each terrain semantic.

This quantitatively verifies that by using the proposed methodology, human demonstrations

do act as a supervisory signal which can be used to refine a over-segmented perception model.

Moreover, initially labels were not mapped to any specific semantic class, giving them no

semantic meaning. However, after utilizing the proposed methodology, each label is mapped

directly to a semantic class. For example, before label 1 did not mean anything to a human,

now it refers to road.

In Figure 4.9 the ground truth, over-segmented image, and refined image are stacked

horizontally for the first frame in the same trajectory as shown above in Figure 4.4. Due to

the parameters of the perception simulator, all segment boundaries are correct for both the

over-segmented and refined models. The difference lies in the quantity of labels and final clas-

sification of segments; the over-segmented model has a higher number of labels and segments.

66

Figure 4.9: Experiment 1. Left: Ground truth. Middle: Initial over-segmented
model. Right: Refined model.

Looking at the frame from the over-segmented model (Figure 4.9 column 2), the addition

of extra segments and labels does not provide anymore information about the scene. As a

result such labels should be merged to provide a more meaningful representation. Note that

although each semantic has an over-segmentation factor of 4, not all 4 are present in every

single frame- this is a result of the Bernoulli distribution chosen for over-segmentation where

2 out of the 4 labels take up the majority of the probability mass. Using the methodology

for refinement results in a representation that exactly follows the ground truth (Figure 4.9

column 3). This qualatatively demonstrates that human demonstrations can be used as a

weak supervisory signal to refine and merge similar labels contained within unsupervised

over-segmented model while simultaneously giving the resulting labels semantic meaning.

67

4.5.4 Experiment 2: Capability to identify and discard poor labels

In the second experiment, the methodology is evaluated on its ability to utilize traversal

evidence to refine an initial perception representation and attempt to alleviate error (i);

noisy labels. For this experiment, over-segmentation (error ii) and noisy labels are simulated

(error i), and therefore misclassification (error iii) is not considered. As in the previous

experiment, segmentation boundaries are perfect. When a poor label is sampled in the first

step of the perception simulator, that label has both inter and intraclass variability. When

a good label is sampled, the label only has intraclass variability respective to its ground

truth class. This setup is chosen to evaluate two aspects of the methodology. Namely, (i) if

noisy labels with high interclass similarity (single labels classifying multiple semantics) are

identified and discarded while keeping the ones with low interclass similarity (single labels

classifying one semantic), and (ii) if the remaining label set after discarding merges to a

meaningful representation.

The initial Bernoulli flip is given a success probability of 0.8, therefore the poor repre-

sentations should be selected roughly 20% of the time. A secondary Bernoulli distribution

is used to sample 2 poor labels, with a success probability of 0.5 such that each poor label

is equally likely to occur.

The six semantic classes- grass, gravel, road, sky, building, and unlabeled- are each as-

signed a unique probability distribution for over-segmentation. Namely, each terrain (grass,

gravel, road) is given an over-segmentation factor of 4, while all other labels are given a value

of 1. Once again, non-terrains are not given an over-segmentation factor because the pro-

posed methodology does not make use of that information when performing merging. Each

terrain follows a binomial distribution B(n, p) where n = 3 and p = 0.8. This configuration

results in 17 possible labels, where 1-11 represent terrain 12-15 represent non-terrain and

16-17 represent noisy labels.

68
Experimental Results

Table 4.5: Experiment 2. Traversal Evidence (feature counts)

Label Terrain

Gravel Grass Road

1 0 0 3

2 0 0 14

3 0 0 54

4 0 0 95

5 0 4 0

6 0 13 0

7 0 36 0

8 0 58 0

9 3 0 0

10 24 0 0

11 50 0 0

12 68 0 0

13 0 0 0

14 0 0 0

15 0 0 0.0

16 48 23 50

17 75 25 59

69
Traversal evidence for a given abstract label relative to the possible parent terrains is shown

in Table 4.5. Figure 4.10 illustrates the robot’s point of view with the future trajectory

overlayed. As the robot moves through space on its trajectory over the road, it traverses the

blue, dark blue, and green pixels. However, also note that the dark blue and green pixels

appear on both the road and in the grass, therefore creating conflicting evidence for labels

16 and 17. This is an example of label noise, signaling that such labels should be thrown

out if their entropy is above the accepted threshold.

Figure 4.10: Experiment 2. Column 1: Raw image; Column 2: Illustration of the
robot’s unsupervised over-segmented image with it’s future trajectory as it traverses
the road (trajectory: red; pixels:blue, dark blue, green) and moves to the grass
(trajectory: pink; pixels: dark blue, yellow, green), thereby creating conflicting
evidence (pixels: green, dark blue). Column 3: Ground truth image.

As per the methodology, once traversal evidence is obtained, first the entropy for each

abstract label is calculated, and used to determine if any labels should be discarded based

on the threshold parameter ✏ = 0.8.

70

Table 4.6: Experiment 2. Abstract Label Entropy (1-8)

Abstract Label

1 2 3 4 5 6 7 8

Entropy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.7: Experiment 2. Abstract Label Entropy (9-17)

Abstract Label

9 10 11 12 13 14 15 16 17

Entropy 0.00 0.00 0.00 0.00 UNDEF UNDEF UNDEF 0.97 0.99

Table 4.6 and 4.7 shows entropy values (Equation 4.3) for each abstract label. Once

again, labels 1-12, which all correspond to terrains, have an entropy of 0.00, while 13-15

have undefined entropies. Distinct to this experiment, labels 16 and 17 have high entropy

values. Specifically, since they are higher than ✏ = 0.8, they are discarded.

Next, each abstract label is mapped to the parent terrain for which it shares the most

evidence with. Utilizing the traversal evidence for each abstract label as seen in Table 4.5,

remaining labels are merged, resulting in a refined representation.

71

Table 4.8: Experiment 2. Quantity of labels

Ground Truth Class

Grass Gravel Road Noisy

Initial 4 4 4 2

Discarded 0 0 0 2

Semantically Mapped 4 4 4 0

Not Semantically Mapped 0 0 0 0

Total Label Quantity 1 1 1 0

As seen in Table 4.8 initially, the over-segmented model starts with 14 terrain labels-

4 for grass, 4 for gravel, 4 for road, and 2 noisy labels. After utilizing traversal evidence

and the proposed methodology, the refined model ends up with 3 labels, namely, 1 for each

terrain semantic. This verifies that by using the proposed methodology, (i) poor labels were

identified and discarded, and (ii) of the remaining labels, accurate label merging occurred.

72

Figure 4.11: Experiment 2. Left: Ground truth. Middle: Initial over-segmented
model with noisy labels. Right: Refined model.

In Figure 4.11 the ground truth, over-segmented image, and refined image are stacked

horizontally for the first frame in the same trajectory as shown above in Figure 4.4. Once

again, due to the parameters of the perception simulator, all segment boundaries are correct

for both the initial over-segmented model and the subsequent refined model. The over-

segmented model not only has a higher number of labels and segments, but also contains

labels with poor interclass accuracy. In the over-segmented model, two labels (dark blue, lime

green) are used to represent two different semantic concepts, grass and road, and therefore

should be discarded. Using the methodology for refinement in the simulation without any

misclassification results in a representation that is exactly like the ground truth. This further

verifies that with the use of human demonstrations as a weak supervisory signal (i) poor labels

can identified and discarded, and (ii) of the remaining labels, accurate label merging occurs.

73

4.5.5 Experiment 3: Robustness to All Noise Sources

In the third experiment, the methodology is evaluated on its ability to utilize traversal

evidence to refine an initial perception representation and attempt to alleviate errors- (i);

noisy labels and (ii) over-segmentation while subject to error (iii) misclassification. This

experimental setup is chosen to demonstrate real world applicability.

Table 4.9: Confusion Matrix

Ground Truth Semantic
Grass Gravel Road

Grass 0.8 0.05 0.05
Gravel 0.1 0.8 0.15Classification
Road 0.1 0.15 0.8

The perception simulator’s initial Bernoulli distribution has the value p = 0.8, meaning

that poor labels with inter and intra class variability are chosen roughly 20% of the time. A

separate Bernoulli with p = 0.5 is constructed to represent 2 poor labels. This distribution

is sampled if the previous Bernoulli distribution draws a failure. If the previous Bernoulli

is a success, a sample is taken from a discrete distribution based on confusion matrix seen

in Table 4.9 to obtain the parent ground truth class. Given the parent ground truth class,

a sample from its respective binomial distribution is taken where n = 3 and p = 0.8 to

obtain the final over-segmented label. The initial model then utilizes the methodology in

Section 4.4 to obtain a refined model.

74
Experimental Results

Table 4.10: Experiment 3. Traversal Evidence (feature counts)

Label Terrain

Gravel Grass Road

1 0 0 4

2 0 0 6

3 6 4 54

4 19 2 75

5 0 0 0

6 3 10 3

7 0 16 5

8 4 45 4

9 0 0 0

10 21 0 0

11 59 6 12

12 82 13 15

13 0 0 0

14 0 0 0

15 0 0 0

16 32 34 50

17 40 24 44

75
Traversal evidence for a given abstract label relative to the possible parent terrains is shown in

Table 4.10. Specific to this experiment, note that many labels overlap (orange) a given parent

terrain due to misclassification being simulated. As per the methodology, once traversal

evidence is obtained, first the entropy for each abstract label is calculated, and used to

determine if any labels should be discarded based on the threshold parameter ✏ = 0.8.

Table 4.11: Experiment 3. Abstract Label Entropy (1-8)

Abstract Label

1 2 3 4 5 6 7 8

Entropy 0.00 0.00 0.57 0.58 UNDEF 0.68 0.39 0.34

Table 4.12: Experiment 3. Abstract Label Entropy (9-17)

Abstract Label

9 10 11 12 13 14 15 16 17

Entropy UNDEF 0.00 0.70 0.76 UNDEF UNDEF UNDEF 0.97 0.99

Table 4.11 and 4.12 shows entropy values (Equation 4.3) for each abstract label. Labels

3,4,6,7,8,11,12,16,17 have non-zero entropy values, 13-15 have undefined entropies due to

no traversal evidence, and labels 16 and 17 have high entropy values. Specifically, since

labels 16 and 17 are higher than ✏ = 0.8, they are discarded while the remaining are kept.

Note that labels 6, 11, and 12 have relatively high entropy values, if the risk acceptance

76
level was lowered to ✏ = 0.6 these labels would be discarded, showing the importance of

accurately assessing and accepting the appropriate level of overlap among demonstrations.

Furthermore, note that the non-zero entropy values are due to overlap occurring from the

simulated misclassification.

Next, each abstract label is mapped to the parent terrain for which it shares the most

evidence with. Utilizing the traversal evidence for each abstract label as seen in Table 4.10,

remaining labels are merged, resulting in a refined representation.

Table 4.13: Experiment 3. Quantity of labels

Ground Truth Class

Grass Gravel Road Noisy

Initial 4 4 4 2

Discarded 0 0 0 2

Semantically Mapped 3 3 4 0

Not Semantically Mapped 1 1 0 0

Total Label Quantity 2 2 1 0

As seen in Table 4.13 initially, the over-segmented model starts with 15 terrain labels-

4 for grass, 4 for gravel, 4 for road, and 2 unkowns. After utilizing traversal evidence and

the proposed methodology, the refined model ends up with 5 labels, namely, 2 for grass,

2 for gravel, and 1 for road. With respect to the 2 labels which contain terrain but are

not semantically mapped- this result occurs due to the low probability each label has of

appearing due to it’s binomial distribution. Specifically, given the binomial distribution with

parameters n = 3 and p = 0.8 the probability of obtaining 0 successes is 0.008. Therefore,

77
these labels occur rarely in the resulting robot’s map and are never traversed. As a result,

these labels are never directly mapped to a terrain. In the real world, this behavior may

occur as labels that are learned and appear in the initial representation, may not transfer

and be relevant to the new current operational environment. Most importantly, utilizing

the methodology, the refined perception model is still able to accurately discard, merge, and

semantically map the overall label set. All while being subjected to all three sources of

unsupervised perception error.

Figure 4.12: Experiment 3. Left: Ground truth. Middle: Initial over-segmented
model with noisy labels. Right: Refined model.

In Figure 4.12 the ground truth, over-segmented image, and refined image are stacked

horizontally for the 1250th frame in the same trajectory as shown above in Figure 4.4. This

frame was chosen to show how the refined model does not perfectly match the ground truth.

Using the methodology for refinement results in a representation that mostly matches the

ground truth, except it can be seen in column 3 that grass and gravel remain slightly over-

segmented. This is because two of the unsupervised labels, namely label 5 corresponding

to grass and 9 to gravel have not been semantically mapped. While the two poor labels

were identified and discarded, not all of the remaining labels were able to be semantically

78
mapped due to not having any traversal evidence. Therefore, it can be concluded that when

considering all types of unsupervised segmentation model noise, one may still obtain a refined

model, however there is a limit to the level of weak supervision human demonstrations can

provide.

4.5.6 Summary of Findings

The previous experiments in this section result in the following takeaways- namely the pro-

posed methodology has the capability to: (i) identify noisy labels and discard them, and (ii)

identify labels with high intraclass similarity and merge them together. Furthermore, initial

labels provided by the perception model did not contain any semantic meaning as they were

obtained using unsupervised data. Initial labels mathematically represented learned features

of the operational environment as vectors, which does not mean anything to a human. Af-

ter utilizing human demonstrations, a refined label set is provided that maps unsupervised

labels to semantics present in the scene which are understandable by a human.

79

4.6 Evaluation - Real World Robotics Dataset

This section evaluates the proposed methodology’s ability to accurately refine a perception

representation tailored for terrain-aware robotic navigation in real world unstructured en-

vironments. We use the Robot Unstructured Ground Driving Dataset (RUGD) [82]- this

dataset contains video sequences of a teleoperated ground robot traversing various unstruc-

tured terrains. Specifically, we use the "Trail-3" ROS bag to train an initial unsupervised

semantic segmentation model and then perform terrain inference using the bag’s trajectory

as a human demonstration. While RUGD provides ground truth labeled frames, it is only

used during evaluation- and never used during training.

4.6.1 Evaluation Metrics

We evaluate each experiment by measuring the 3D segmentation accuracy [88], over-segmentation

entropy, and under-segmentation entropy [31]. Traditional scores in supervised semantic seg-

mentation, such as Mean IoU are not sufficient since initial models are never directly mapped

to semantic concepts, and neither are labels in the refined models.

3D Segmentation Accuracy: While pixel-level accuracy represents the area of cor-

rectly classified pixels for a given frame, supervoxel-level accuracy represents the volume of

correctly classified pixels over a sequence of frames. For a given image-stream, each ground

truth label has a corresponding supervoxel Ti, thereby producing the set of supervoxels T .

Similarly, each abstract label output from the unsupervised segmentation algorithm has a

corresponding supervoxel Si, producing the set of voxels S. For each Ti, a secondary set S̄

is constructed quantifying which abstract labels overlap the most with the current ground

80
truth label according to the following rule:

8Sj 2 S;Sj 2 S̄ () |Sj| \ |Ti| > |Sj| \ |Tk|

: 8Tk 2 T ^ Tk 6= Ti

(4.6)

From the aforementioned sets, the 3D segmentation accuracy is measured as:

ACC(Ti) =

P|S̄|
j=1 |V (Ti)| \ |V (S̄j)|

|V (Ti)|
(4.7)

where the volume V (·) of a given supervoxel Gi, namely V (Gi), is computed as the proportion

of pixels belonging to the given supervoxel and the total number of pixels in the image-stream.

Over and Under Segmentation Entropy: 3D Segmentation accuracy in of itself

is not a sufficient metric, as an algorithm may obtain a low measure (0.0) if all voxels

mostly overlap with a given Ti or a high measure (1.0) with many small voxels. Over-

segmentation may provides a deeper explanation of an image, but often catches details

that have high intraclass similarity, often complicating scene understanding and resulting

in a large number of output classes. In contrast, under-segmentation may provide a simple

explanation, but does not provide enough information about the relevant children concepts

relevant to the task. Therefore, we consider two additional measures, over-segmentation

entropy and under-segmentation entropy. As setup, probability distributions over pixels and

voxels are constructed. The probability a pixel in stream D is a member of a given supervoxel

Gi is measured as:

P (G = Gi) =
|V (Gi)|

|V (D)|
(4.8)

The joint probability of two voxels Ti and Sj is:

P (T = Ti, S = Sj) =
|V (Ti)| \ |V (Sj)|

|V (D)|
(4.9)

81
The conditional probability of two voxels Ti and Sj is:

P (T = Ti|S = Sj) =
P (T = Ti, S = Sj)

P (S = Sj)
(4.10)

Using these distributions, the over-segmentation entropy is measured as:

H(S|T) = �
X

S,T

P (T, S) logP (S|T) (4.11)

Similarly, the under-segmentation entropy is measured as:

H(T |S) = �
X

S,T

P (T, S) logP (T |S) (4.12)

Where lower values of over and under segmentation entropy indicate better performance.

4.6.2 Quantitative Results

We use the Robot Unstructured Ground Driving Dataset (RUGD)- this dataset contains

video sequences of a teleoperated ground robot traversing various unstructured terrains.

The frames that make the video sequences are used to train an initial unsupervised semantic

segmentation model, while the teleoperated demonstration is used to provide evidence for

label refinement. Specifically, an initial USSL model using a combination of color, and local

binary pattern [79] features is trained on the Trail-3 dataset. Demonstration evidence in the

corresponding ROS bag is split across the four main terrains present in the dataset, resulting

in four distinct trajectories, thereby constructing �. Namely, asphalt is traversed over in

images 0 � 55, mulch from 121 � 210, gravel from 341 � 440 and grass from 552 � 580.

These subsets of images relative to the robot’s global map reference frame are fed into the

aforementioned terrain projection system to obtain terrain occupancy grids which are used as

82
label evidence. Using the label evidence according to the proposed methodology (Sec. 4.4),

we obtain 3 distinct USSL models varied by their entropy acceptance threshold ✏, namely

✏ = 0.8, ✏ = 0.4, and ✏ = 0.2- each resulting in subsequent smaller label sets M . These

values were chosen to show the impact ✏ has on the final label set.

Table 4.14: Number of USSL Labels

USSL Model

Original Refined:
✏ = 0.8

Refined:
✏ = 0.4

Refined:
✏ = 0.2

Labels 44 24 9 7

Label refinement reduces the overall label set: Using the proposed methodology,

all refined models obtain a smaller label set M compared to the initial number of labels (Table

4.14). Once again showcasing that human demonstrations paired with image projection do

in fact provide a weak supervisory signal that can be used to refine an unsupervised semantic

segmentation model’s initial over-segmented label set.

Table 4.15: 3D Segmentation Accuracy

USSL Model

Original Refined
✏ = 0.8

Refined
✏ = 0.4

Refined
✏ = 0.2

Mulch 31.21 88.13 45.86 50.96
Grass 58.91 80.22 37.80 73.89

Asphalt 17.79 8.64 45.26 46.38

T
er

ra
in

Gravel 59.71 45.62 63.66 0.00

Label refinement leads to higher accuracy: The best segmentation accuracy for

83
each respective terrain occurs in one of the refined models. Moreover, the refined model

with ✏ = 0.4, has the lowest range among accuracy scores, indicating that it is able to

classify all terrains present most reliably. Note the 0.00 value for gravel for the refined model

with ✏ = 0.2, this indicates that no label supervoxel mostly overlapped with the gravel

ground truth label. This is a sign that the label set has been refined too much, therefore

there is a limit to how much merging can be done before the representation becomes unable

to adequately explain its operating environment.

Table 4.16: Under-segmentation and over-segmentation

USSL Model

Original Refined
✏ = 0.8

Refined
✏ = 0.4

Refined
✏ = 0.2

USE 6.252 6.391 4.523 3.986Metric OSE 1.334 1.227 1.000 0.987

Label refinement provides more accurate segmentation boundaries: As ✏ de-

creases, and therefore the number of labels, as does the under and over segmentation entropy.

This indicates that the segment boundaries obtained from the refined models are more ac-

curate across the image-stream with respect to the ground truth labels. Although ✏ = 0.2

achieves the best score, that does not make it the best model since it failed to accurately

identify all terrains as demonstrated in Table 4.15. The chosen value for ✏ depends on the

system designers risk acceptance, and the tradeoff between having an under-segmented or

over-segmented model. If a higher level of risk acceptance is allowed (epsilon increases)

the refined model will contain a higher number of labels with the tradeoff of being over-

segmented compared to when a low level of risk acceptance is allowed, resulting in less labels

and under-segmentation.

84

4.6.3 Qualitative Results

Figure 4.13: Qualitative segmentation results at frames where each main terrain ap-
pears. Rows: Segmentation output among models compared to the raw image and
ground truth. Columns: Model unsupervised segmentation output across frames.

A qualitative comparison of the segmentation results produced by the original USSL model

and our refined model visually shows reduced over-segmentation and improved label consis-

tency (Fig. 4.13). Progressing through the columns for each row, we see considerably less

over-segmentation as ✏ decreases. This establishes the proposed methodology’s ability to

merge abstract classes together using human demonstrations.

Moreover, there is a limit on ✏ before it leads to undesired segmentation, in column 5

the same label is being used to classify the road, gravel, and portions of the grass. In order

to decide the final refined model to be chosen, there is a tradeoff between over and under

segmentation. To elaborate, the acceptance of an over or under segmented final label set is

85
dependent on the type of autonomous behavior one would like to obtain. If system designers

simply want to distinctly classify traversable terrains from the un-traversable terrain such as

the horizon line between terrain and sky they may want to chose a lower risk acceptance as it

results in fewer labels, and having more perception information does not help the overall task.

Contrarily, if system designers would like to autonomously navigate with a clear preference

over terrains, and terrains sub-types, such as the different types of road, grass, and gravel,

they may want to chose a high risk acceptance as it results in a higher number of labels,

which although may be noisy, may enable the autonomous capability desired.

4.7 Evaluation - Autonomous Waypoint Navigation

As previously hinted, the combination of inverse reinforcement learning and unsupervised se-

mantic segmentation enables autonomous waypoint navigation using only unsupervised data,

and human demonstrations. After an initial unsupervised semantic segmentation model is

trained and refined, the resulting representation may be used as a reward basis for au-

tonomous traversal. This differs from the work in Chapter 3 which required a supervised

perception system.

4.7.1 Experiment Setup

This experiment utilizes the refined model obtained in Experiment 3 (Section 4.5.5) as the

reward basis for inverse reinforcement learning. Specifically, the labels present in the refined

model are used for parameter w in Chapter 3, Equation 3.3 in inverse reinforcement learning.

Two reward models are trained utilizing 3 human demonstrations where the demonstrator

stays mostly on the road, traverses grass when there is no other option, and avoids gravel.

The first reward model uses maximum entropy inverse reinforcement learning, while the

other uses risk averse Bayesian reward learning. Their relative performance to perform

86
autonomous waypoint navigation in an unstructured environment via a 3D graphics engine

is then evaluated.

4.7.2 Experimental Results

Using this representation, a reward model for terrain traversal is learned on 3 human demon-

strations for two techniques Maximum Entropy inverse reinforcement learning, and risk

averse Bayesian reward learning with a uniform prior and an acceptable risk factor of ✏ = 0.8

yielding the following reward weights seen in Table 4.17:

Table 4.17: Reward weights among semantic terrains

Reward Model Feature Weight
Grass Gravel Road U1 U2

(i) Maximum Entropy IRL -0.20 -0.51 0.38 -0.63 -0.50
(ii) Risk Averse Bayesian Reward Learning -0.43 -2.00 0.99 -2.00 -2.00

Note that U1, and U2, correspond to unknowns. This is because U1 and U2 where never

directly mapped to any terrain, although they are terrains. When comparing the weights

between the two models, both reward models learn weights which match the demonstrator’s

preferences over terrains. Namely, road achieves the highest reward in both models, followed

by grass, and finally gravel. Moreover, both reward models learn that the unknown features

have the highest negative reward. This is due to the fact that the unknown terrains rarely

occur in the resulting demonstration maps, and they are never traversed. The difference

between the two models is in the relative difference between rewards. Namely, RABRL,

assigns high negative reward to gravel, U1, and U2 since their uncertainty is above the

determined threshold. Moreover, the relative difference of rewards between road and grass

is higher on the RABRL model.

87
To evaluate autonomous navigation performance, the refined model is ran online, per-

forming semantic segmentation on images output by the simulated robot’s camera in the

3D graphics engine. The autonomous system’s terrain projection module takes the semantic

images as input, and outputs a set of occupancy grids for each of the perception model’s

terrain labels by projecting pixels to the ground plane. Then the learned reward weights

are used to assign costs to occupancy grids. The robot then performs autonomous waypoint

navigation using a search based planner which finds the least cost path to a goal using the

produced cost map.

Figure 4.14: Birds eye view of the test scenario for autonomous operation in an
unstructured environment containing 3 terrains, grass (green), gravel (brown), and
road (gray). Green hexagon: start. Red circle: end.

Each model is tested on its ability to autonomously navigate the mission in Fig 4.14,

where the start location is represented by a green hexagon, and the goal location represented

by a red circle. Each model attempts the mission 3 times. To quantitatively measure

performance, we compare the trajectories obtained from autonomous traversal to an expert

trajectory teleoperated by a human and considered to be optimal. The distance between the

optimal trajectory and the autonomous trajectory is captured using the modified Hausdorff

Distance [22], namely:

h(A,B) =
1

|A|

X

ai2A

min
bj2B

(d(ai, bj)) (4.13)

88
Where A represents the expert trajectory, B represents the autonomous trajectory, and d

represents the distance between two (x, y) coordinates a and b. A lower score in this metric

is better, meaning that there is less distance between the optimal teleoperated trajectory

and the autonomous trajectory.

Table 4.18: Modified Hausdorff Distance for each reward model

Model Modified Hausdorff Distance

Mean Median Best Worst

(i) MaxEnt 7.401 7.785 3.975 10.459

(ii) RABRL 5.363 5.313 4.412 6.363

Figure 4.15: Birds eye view showing best case autonomous traversal performance.

89

Figure 4.16: Birds eye view showing median case autonomous traversal perfor-
mance.

Figure 4.17: Birds eye view showing worst case autonomous traversal performance.

90
Comparing the two models, the risk averse bayesian reward learning (RABRL) model

achieves a lower mean, median, and worst case modified Hausdorff Distance. The maximum

entropy model achieves the lowest distance for the best autonomous trajectory compared

to RABRL. Although quantitatively it seems that the weights of the RABRL model are

more representative of the underlying environment’s true reward when compared to the

maximum entropy model as denoted by it’s lower Hausdorff Distance, this is not the case

qualitatively when considering the overall mission goals. When looking at the accompanying

figures (Figure 4.15, Figure 4.16, and Figure 4.17), we can see that both models accurately

follow the demonstrators preferences over terrain. That is, they stay on the road while

avoiding the grass and gravel. Most importantly, both models are able to autonomously

navigate the unstructured environment with low distances, backing up this dissertation’s

claim that an unsupervised segmentation model’s labels can be used as reward basis for

inverse reinforcement learning.

To conclude, supporting experimental results in this section show that one can achieve

autonomous waypoint navigation which follows a demonstrators preferences using only un-

supervised data. Using an unsupervised perception model as the reward basis for inverse

reinforcement learning has large real-world impact. On the contrary, supervised perception

models require labeled data representative of the operational environment. Besides cost and

time, if the labeled data fails to capture all aspects of the underlying environment it will

not be able to perform desired mission behavior. Using unsupervised data, engineers can

quickly collect a sequence of images, train an initial perception model, refine it, and use it

as a perception system. This enables one to drop a robot anywhere, and quickly train it to

understand the current operational environment.

91

4.8 Conclusion

In contrast to dense pixel-wise semantic labeling, this chapter presents a methodology to

incorporate human demonstrations as weak supervisory signals to an unsupervised semantic

segmentation algorithm. First, the algorithm learns a set of abstract label representations

across an unlabeled video stream resulting in an over-segmented set of labels. Second, a

human teleoperates the robot to provide a small dataset of navigation demonstrations that

traverse each high-level semantic concept present in the environment. Finally, the traversal

evidence from the human demonstrations is used to map the over-segmented unsupervised

abstract labels to a discrete set of high-level semantic labels to create a more unified repre-

sentation that alleviates over-segmentation. Using the resulting unified class representations

as the perception model, a perception subsystem is able to segment a subset of pixels to a

high-level semantic label for every image in future video streams.

Supporting experimental results both in an over-segmentation simulator utilizing a 3D

graphics engine, and on the RUGD dataset show that demonstrations which inform label

merging for an initial over-segmented unsupervised model are able to learn a set of labels

which directly map to every terrain in the scene. Moreover, the refined perception out-

put may be used as the reward basis for inverse reinforcement learning, thereby enabling

autonomous waypoint navigation with terrain preferences in unstructured environments.

92

4.9 Appendix- Unsupervised Semantic Scene Labeling

The first stage of our pipeline relies on an unsupervised stream-based segmentation algo-

rithm to learn an initial partitioning of pixels into coherent groups. The output of unsu-

pervised algorithms is often over-segmented, and later stages in our pipeline will refine this

output (discussed in Sec. 4.4) to produce a perception model that provides high-level seman-

tic segmentation output similar to supervised models but without ground truth pixel wise

annotations for learning.

Although any unsupervised segmentation algorithm could be inserted into the first stage

of our pipeline, we use the Unsupervised Semantic Scene Labeling (USSL) [80] algorithm

with modifications to use pre-trained deep neural networks for feature extraction. USSL is

selected for its ability to identify true class boundaries and looser segmentation requirements

which result in an over-segmented image. As seen in Fig. 4.3, learned segment labels from

USSL are not required to form a connected component of pixels, USSL has the ability to

learn a single segment that is composed of pixels from disconnected regions in an image. This

is beneficial in autonomous navigation, as the same terrain may be separated from another,

such as a road with grass on both sides. A overview of the USSL algorithm follows.

USSL is an ensemble-based approach that leverages agglomerative (bottom-up) clustering

to automatically learn the number of unique representative concepts within a data stream.

The algorithm reduces noise introduced in unsupervised learning caused by the lack of explicit

guidance on what to learn while discovering novel classes throughout time in the data stream

without a-priori knowledge on the ground truth set of output class labels. If USSL is trained

entirely online, initial global models are noisy at first, but become stable as more windows

are processed. Conversely, if USSL is trained offline, it can learn a base set of output labels,

and then when operating online, it can either continue to learn new output classes, or stay

with the base set.

93
USSL classifies pixels in a bottom up manner using two main concepts, local and global

label models. A local label model segments an image based on color similarity to previous

frames in a window of images by agglomeratively clustering superpixels [2] to obtain a set

of parent segments describing an image. Global label models encode the relationship among

multiple local model parent segments across overlapping windows throughout time, produc-

ing a set of final output labels which are used to perform semantic segmentation. Next,

we describe the main USSL components, including feature extraction, local labeling where

superpixel groupings are discovered via agglomerative clustering, and global labeling, where

local model clusters are composed into an ensemble.

Feature Extraction

USSL receives as input a stream of images D = {I1, I2, ..., In}. Each Ii is first processed into

K superpixels using SLIC [2], then feature extraction is performed for each SLIC segment.

USSL was originally tested [80] using generic low-level features, including histogram of ori-

ented gradients [18], local binary patterns [60], and scale invariant feature transforms [50].

Rather than use generic low-level features, we extend USSL to leverage modern deep learning

feature extraction approaches. Specifically, we evaluate the use of two deep convolutional

neural networks for feature extraction, MobileNetV2 [69], and EfficientNet [73]. Both models

where trained on the ImageNet dataset [19]. These specific architectures where chosen due

to their focus on runtime efficiency as they will be residing on a simulated robotic platform

with limited computational resources. For a given model, a feature vector for each super-

pixel, �(ki), of dimension 1280 is extracted using the penultimate (second to last) layer of

the model architecture.

94

Local Labeling

Creation of an ensemble of local models is achieved by running the segmentation task on

overlapping sliding windows. Windows are initialized every p/2 frames such that the first

half of the frames overlap with the window before it, and the second half with the window

after. For our experiments, we set p = 6 because the incoming data-stream is 6 frames per

second. Local labeling within a window is responsible for grouping superpixels into clusters

using proximity and feature similarity information via agglomerative clustering. The set of

learned clusters within a window comprises a set of local models M = {m1,m2, ...,mn},

where each mi is the feature representation of an abstract output label. Local models are

encoded as a single region adjacency graph (RAG) [63], RAG = (V,E),such that each vertex

vi represents local model mi and an edge ej is created for each surrounding neighbor model.

During clustering, similarity between any two superpixels, ki and kj is computed as:

s(ki, kj) =
1

1 +

r
[�(ki)� �(kj)]2

(4.14)

yielding a numerical value in the range [0, 1]. Eq. (4.14) is evaluated for all pairwise combina-

tions of feature vectors to obtain the similarity matrix S such that the (i, j) index represents

the superpixel similarity score between superpixel Ki an Kj. Since both superpixels K and

local models M are groups of pixels, they can be used interchangeably as arguments to this

equation and the ones that follow. The nearest neighbor for each superpixel Ki is then

calculated yielding Smax.

Smax = argmax
kj2K

s(ki, kj) (4.15)

For each frame in the window, USSL automatically learns the merging threshold for

halting agglomerative clustering in the RAG, thereby updating the set of local models. In

95
order to determine which superpixels are merged, a Gaussian history distribution h of feature

similarities throughout the lifetime of the window. Each nearest neighbor local model and

superpixel serve as samples to this distribution:

H = [s(kmax,mmax) | 8 (kmax,mmax) 2 Smax] (4.16)

The agglomerative clustering threshold is calculated as:

� =

8
>><

>>:

�1, if s(mi,mj) < µh

1, otherwise
(4.17)

Where µh represents the mean of the history distribution. Local models are then iteratively

merged within M. At each step, the next model to be merged is determined by:

l
⇤ = max

mi2M
� ⇤ s(mi,mj) (4.18)

This process continues until l⇤ becomes negative. The steps defined by Eqs. (4.14) - (4.18)

repeat for each frame in the window- updating the set of local models for each incoming

frame throughout the lifetime of the window.

Global Labeling

After all frames from a sliding window have been processed, the global labeling of USSL uses

the evidence across the current local model ensemble to generate a global set of abstract

output labels for the entire stream, M̂ = {m̂1, m̂2, ..., m̂n}. Each m̂i from the most recent

window is added to the global labeling graph, G = (V,E). Each vertex, vi 2 G, represents

a local label model indexed by window and label vi(wk, m̂j). An edge ek 2 G encodes that

two local models from overlapping windows have at least one pixel in common. The edge

96
weight (↵ek) represents the number of shared pixels between the two models. The underlying

assumption is that if two local models from separate sliding windows share enough pixels in

common, the underlying semantic concept learned across the two are the same. Ultimately,

the set of connected components in G will define the final global models, M̂ , but edges

with low evidence of similarity are first pruned to eliminate noise introduced in the local

unsupervised model. The evidence score for vertex vi is calculated as:

✏vi(vi(wk, m̂j)) =
↵e(wk,m̂j)P|E|
ek=1 ↵ek

(4.19)

Where | · | denotes set cardinality If ✏(vi(wk, m̂j)) < � the edge is pruned. Each resulting

group of connected components represents a single global label.

Chapter 5 Conclusion

5.1 Overview of contributions

This dissertation provides three main contributions:

1. Contribution 1 - Risk Averse Bayesian Reward Learning for Autonomous Navigation

from Human Demonstration

2. Contribution 2 - Refining Unsupervised Semantic Segmentation Labels with Human

Demonstrations

3. Contribution 3 - Unsupervised Reward Basis for Inverse Reinforcement Learning

from Human Demonstrations

The claims of each contribution are verified with supplementary experimental results in their

associated chapters. The breif summary of each contribution follows.

97

98
Contribution 1: In the first contribution, the method outlined in Chap. 3 is used to

learn a reward model for a robot operating in an unstructured environment. The train-

ing environment contained 2 terrains, while the testing environment contained 3 terrains.

The additional terrain in the testing environment is considered dangerous due to mission

constraints. The resulting reward function leads to paths which match the demonstrator’s

terrain preferences while completely avoiding the third dangerous terrain. This is enabled by

the use of a Bayesian posterior which quantifies uncertainty over the reward basis. This con-

tribution provides evidence that uncertainty quantification facilitates autonomous systems

to operate safely in environments beyond where they were trained.

Contribution 2: In the second contribution, the method outlined in Chap. 4 is used to

refine an initial over-segmented, non-semantic feature representation to a smaller, semantic

feature representation from human demonstrations. Supporting experimental results verify

that there are three forms of perception refinement which are provided with the use of human

demonstrations; (i) capability to identify and discard poor labels, (ii) capability to merge

over-segmented labels together representing the same semantic concept, and (iii) capability

to map unsupervised labels to semantic concepts, specifically terrain.

Contribution 3: In the final contribution, the methods from Chap. 3 and Chap. 4 are

combined to enable autonomous waypoint navigation using only a sequence of unsupervised

images and a limited set of human demonstrations. Experimental results verify the ability

to learn control behaviors such as demonstrating a preference over terrains with the refined

reward basis.

99

5.2 Future Work

While initial work [25] demonstrated the ability to follow terrain preferences from human

demonstrations while avoiding the dangerous terrain, subsequent work [24] demonstrated the

ability to utilize human demonstrations as a weakly supervised signal to refine unsupervised

perception models and use this model as a reward basis for inverse reinforcement learning, a

number of possible future contributions remain. Subsequent subsections outline future work

that may be completed upon each major body of work presented in this dissertation, and

other related lines of work in the field of autonomous system safety.

5.2.1 Risk Averse Bayesian Reward Learning from Human Demonstrations [25]

The primary appeal of Bayesian reward learning is that the resulting posterior can be used

to quantitatively measure uncertainty. The original work subscribed to the risk averse view,

where the model automatically penalized features with high uncertainty. However, in real

world robotics scenarios this is not always the case, uncertainty may not always mean risky

behavior. Suppose that instead of the unknown terrain being something dangerous such as

mud or ice, the unknown terrain was actually beneficial, such as perfectly smooth racetrack

quality asphalt. An alternative view of uncertainty is that the model is quantitatively de-

scribing to system designers what it knows, and what it doesn’t know. With this lens, an

active scenario may be considered, where the model identifies areas of high uncertainty to

construct queries for system designers. The query would arise a simple yes, no question, "Is

this feature desirable?", and the answer is used to update the posterior’s prior over beliefs.

While active inverse reinforcement learning over a Bayesian posterior has been considered

in other works [47, 47], they both focus on particular states, rather than the features that

describe states.

Moreover, risk averse Bayesian reward learning involved either directly computing the

100
posterior over a small discrete set of reward functions, or estimating it using Markov chain

Monte Carlo (MCMC) methods. Although MCMC methods do enable one to consider a

larger, continuous reward space, training time is still limited by the size of the MDP, the

number of features considered, and the number of demonstrations provided. At each reward

function evaluation, the solution to a Markov decision process must be exactly computed

to obtain the expected state visitation frequency over environmental features. Prior work

in inverse reinforcement learning [28] enables the state visitation frequency to be estimated

rather than exactly computed. The application of such a technique can be used to decrease

training time. If training time can be decreased enough, one could train reward models in

real time, as the robot is operating. Assuming the appropriate feature detectors exist for

the desired behavior, real time training would enable an operator to drop a robot in a new

environment, drive it around for a few minutes, and then be able to autonomously navigate

that environment within a short period of time.

Furthermore risk averse Bayesian reward learning requires feature indicator(s) for ter-

rain(s) whose reward weight(s) are unknown. Suppose a robot learns a reward function in

an environment where only one unknown terrain is considered, if it later operates in an

area where two unknown terrains are present, it will ignore it completely as it is not part

of the underlying state representation considered for reward learning. Rather than seek to

explicitly have feature detectors for all terrain features, one could feed in preprocessed sensor

data as input to a deep neural network which outputs cost maps directly. Since deep neural

networks are non linear, this also enables one to consider non-linear reward models. This has

been done in traditional Maximum entropy inverse reinforcement learning settings [85] but

much less has been done in the Bayesian setting [35]. However nonlinear, deep models often

require a large number of demonstrations, so the ability to learn non-linear models from a

small amount of demonstrations is a key area of interest.

101
Although this work explicitly considers the Maximum Entropy robot model [96], other

robot models such as the ones outlined in [37] could be substituted for Eq. (3.9). In the

maximum entropy model, all demonstrations are considered to be optimal, but that is not

always the case in real world scenarios. For example, one may have an exact ranking over

many trajectories, or may have certain groups of trajectories that are more desirable than

others. Therefore exploring the autonomous performance obtained by learning on various

demonstrations of trajectories is also a future research question to be answered. Are certain

models capable of learning more accurate reward model’s with less demonstrations? Which

types of demonstrations are the easiest to collect without combing through the data?

Lastly, although this dissertation showed the methodology was able to learn accurate re-

wards if assumptions about being risk averse are correct, can we provide provable guarantees

on the learned reward model? One path towards providing provable bounds could calculate

credible intervals about measures of central tendency about each marginal reward weight.

A different path may consider the use of side information in the form of temporal logic

constraints provided as side information to the learning agent, such as in recent work [20].

However while this work explicitly provided provable empirical verification measures during

learning, further work is required to make sure verification measures are upheld during model

deployment.

5.2.2 Unsupervised Perception Model Refinement [24]

While the refinement methodology proposed in Chapter 4 does produce refined representa-

tions that aid autonomous traversal, some limitations remain. First, if the initial label set M

is an overall poor representation with many noisy labels, the refined label set will not be any

better. At best, all noisy labels can be identified and discarded, but if all labels are noisy,

the resulting refined representation will result in all labels being discarded. Such behavior

may occur from poor feature extraction techniques, poor learned representations, and data

102
complexity (highly dimensional, complex scenes, lighting and occlusion). This behavior was

seen in Section 4.6. As such, future work seeks to replace the feature detectors used in Sec-

tion 4.6 with off the shelf deep learning feature detectors trained on unstructured datasets

such as RUGD [80].

Furthermore, while the refinement methodology is able to identify labels with high intra-

class similarity to be identified and merged together, but those with high interclass similarity

are only discarded. If a label has high interclass similarity, it may be more appropriate to

"break the label up" into several labels. The proposed approach is to discard noisy la-

bels, when perhaps they should be introspected more deeply. This limitation predominately

comes from the focus on alleviating over-segmentation, and as such the methodology may

be expanded to alleviate under-segmentation beyond discarding.

Moreover, since the weak supervisory signal obtained from human demonstrations di-

rectly maps labels to semantic classes, the resulting set of semantic segmentation images

obtained by the refined model may be used to automatically label unsupervised data. As

mentioned previously, ground truth data labeling is normally a time-consuming and expen-

sive process. However, a framework based on the proposed methodology for refinement can

be created for automatic data labeling of raw images. Subsequent labeled data could be used

to train perception algorithms which only work with supervised data. This does have one

caveat, in real world scenarios, resulting labeled data likely will not match the ground truth

exactly. The level of accuracy of resulting labeled data is dependent on the initial algorithm

performing unsupervised semantic segmentation. Therefore, further prepossessing steps will

likely be required.

Lastly, although this work was able to incorporate human teleoperated demonstrations,

future work seeks to incorporate secondary sources of supervisory information in order to

103
develop more accurate feature representations with sources such as human intervention and

active human evaluation.

5.2.3 Autonomous Systems Safety and Formal Verification

While the research outlined in this dissertation focus on two main tasks: (i) responding to

previously unseen environmental features, and (ii) finding an accurate perception representa-

tion of the current environment, future work seeks to take a broader approach to autonomous

systems safety. An initial literature survey I conducted in 2022 [23] identified the current

state of the art regarding approaches to autonomous system safety while simultaneously

outlining the gaps in current literature. Broadly speaking, future work seeks to adapt au-

tonomous system behavior learned in one environment to reliably and safely transfer to new

environments, in the context of autonomous navigation in unstructured environments.

Towards this goal, the main research path seeks to bridge the gap between recent ad-

vancements made in formal verification of autonomous systems such as [51] [84] and real

world autonomous systems. Currently, formal verification guarantees are often made in sim-

ulated environments modeling how an autonomous system is expected to act, however such

guarantees fail to hold in the real world. How can we get reliable real world verification

measures of autonomous system performance? Moreover, accompanying assumptions such

as the capability to model exact robot dynamics, having perfect perception or mapping, or

the capability to identify all possible future states a robot may encounter a priori are not

possible in real world scenarios. Can we relax these assumptions while still providing accurate

verification measures?

A second possible research path includes developing realtime runtime monitoring methods

loosely based on [3] for a navigation system. System safety specifications can be provided

in a formal language such as temporal logic which act as constraints during autonomous

operation. If an autonomous system trajectory planner provides a path that violates these

104
specifications, the plan may either be sent back to the planner, or altered by the runtime

monitor such that the plan does satisfy the specifications. For example, suppose a planner

choses the shortest path to reach a goal, but the path provided requires the robot to operate at

a high speed at a high pitch/slope grade which may cause the robot to flip due to its physical

constraints. The navigation system, which is aware of such physical constraints, takes the

plan as input and checks if every pose in the suggested plan either violates or satisfies the

constraints. In this system configuration, the runtime monitor is planner agnostic, it takes

plans as input, and verifies safety properties of the plan.

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on machine learn-
ing. ICML ’04. Banff, Alberta, Canada: Association for Computing Machinery, July
2004, p. 1.

[2] Radhakrishna Achanta et al. “SLIC superpixels compared to state-of-the-art superpixel
methods”. In: IEEE transactions on pattern analysis and machine intelligence 34.11
(2012), pp. 2274–2282.

[3] Mohammed Alshiekh et al. “Safe reinforcement learning via shielding”. In: Proceedings
of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[4] Dario Amodei et al. “Concrete Problems in AI Safety”. en. In: arXiv:1606.06565 [cs]
(July 2016). arXiv: 1606.06565.

[5] Christophe Andrieu et al. “An introduction to MCMC for machine learning”. In: Ma-
chine learning 50.1-2 (2003), pp. 5–43.

[6] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics
and autonomous systems 57.5 (2009), pp. 469–483.

[7] Saurabh Arora and Prashant Doshi. “A survey of inverse reinforcement learning: Chal-
lenges, methods and progress”. In: Artificial Intelligence 297 (2021), p. 103500.

[8] Saurabh Arora and Prashant Doshi. “A survey of inverse reinforcement learning: Chal-
lenges, methods and progress”. In: Artificial Intelligence 297 (2021), p. 103500.

[9] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation”. In: IEEE transactions on
pattern analysis and machine intelligence 39.12 (2017), pp. 2481–2495.

[10] Michael Bain and Claude Sammut. “A Framework for Behavioural Cloning.” In: Ma-
chine Intelligence 15. 1995, pp. 103–129.

[11] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A re-
view and new perspectives”. In: IEEE transactions on pattern analysis and machine
intelligence 35.8 (2013), pp. 1798–1828.

[12] Christopher M Bishop. Pattern recognition and Machine Learning. Springer, 2006.
isbn: 0387310738zs.

[13] Daniel Brown et al. “Extrapolating beyond suboptimal demonstrations via inverse
reinforcement learning from observations”. In: International conference on machine
learning. PMLR. 2019, pp. 783–792.

[14] Daniel Brown et al. “Safe imitation learning via fast bayesian reward inference from
preferences”. In: International Conference on Machine Learning. PMLR. 2020, pp. 1165–
1177.

105

106
[15] Liang-Chieh Chen et al. “Encoder-decoder with atrous separable convolution for se-

mantic image segmentation”. In: Proceedings of the European conference on computer
vision (ECCV). 2018, pp. 801–818.

[16] Jang Hyun Cho et al. “Picie: Unsupervised semantic segmentation using invariance and
equivariance in clustering”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 16794–16804.

[17] Jaedeug Choi and Kee-Eung Kim. “MAP inference for bayesian inverse reinforcement
learning”. In: Advances in Neural Information Processing Systems. 2011, pp. 1989–
1997.

[18] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detection”.
In: 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05). Vol. 1. 2005, pp. 886–893.

[19] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. 2009, pp. 248–255.

[20] Franck Djeumou et al. “Task-guided IRL in POMDPs that scales”. In: Artificial Intel-
ligence 317 (2023), p. 103856.

[21] Carl Doersch, Abhinav Gupta, and Alexei A Efros. “Unsupervised visual representation
learning by context prediction”. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 1422–1430.

[22] Marie-Pierre Dubuisson and Anil K Jain. “A modified Hausdorff distance for object
matching”. In: Proceedings of 12th international conference on pattern recognition.
Vol. 1. IEEE. 1994, pp. 566–568.

[23] Christian Ellis, Maggie Wigness, and Lance Fiondella. “A mapping of assurance tech-
niques for learning enabled autonomous systems to the systems engineering lifecycle”.
In: 2022 IEEE International Conference on Assured Autonomy (ICAA). 2022, pp. 28–
35.

[24] Christian Ellis et al. “Refining Unsupervised Semantic Segmentation Labels with Hu-
man Demonstrations (under review)”. In: 2024 IEEE/RSJ International Conference
on Robotics and Automation (ICRA). 2024.

[25] Christian Ellis et al. “Risk averse bayesian reward learning for autonomous naviga-
tion from human demonstration”. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2021, pp. 8928–8935.

[26] Linus Ericsson et al. “Self-Supervised Representation Learning: Introduction, advances,
and challenges”. In: IEEE Signal Processing Magazine 39.3 (2022), pp. 42–62.

[27] Di Feng et al. “Deep multi-modal object detection and semantic segmentation for
autonomous driving: Datasets, methods, and challenges”. In: IEEE Transactions on
Intelligent Transportation Systems 22.3 (2020), pp. 1341–1360.

107
[28] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep inverse

optimal control via policy optimization”. In: International conference on machine learn-
ing. PMLR. 2016, pp. 49–58.

[29] Alberto Garcia-Garcia et al. “A survey on deep learning techniques for image and video
semantic segmentation”. In: Applied Soft Computing 70 (2018), pp. 41–65.

[30] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised Representation
Learning by Predicting Image Rotations”. In: International Conference on Learning
Representations. 2018.

[31] Haifeng Gong and Jianbo Shi. Conditional Entropies as Over-Segmentation and Under-
Segmentation Metrics for Multi-Part Image Segmentation. University of Pennsylvania
Department of Computer and Information Science; Philadelphia, PA. Tech. rep. USA:
2011. Technical Report MS-CIS-11-17, 2011.

[32] Junyao Guo, Unmesh Kurup, and Mohak Shah. “Is it safe to drive? An overview of
factors, metrics, and datasets for driveability assessment in autonomous driving”. In:
IEEE Transactions on Intelligent Transportation Systems 21.8 (2019), pp. 3135–3151.

[33] Dylan Hadfield-Menell et al. “Inverse reward design”. In: Advances in neural informa-
tion processing systems 30 (2017).

[34] Borja Ibarz et al. “Reward learning from human preferences and demonstrations in
Atari”. In: Advances in neural information processing systems 31 (2018), pp. 8011–
8023.

[35] Mahdi Imani and Seyede Fatemeh Ghoreishi. “Scalable inverse reinforcement learning
through multifidelity Bayesian optimization”. In: IEEE transactions on neural networks
and learning systems 33.8 (2021), pp. 4125–4132.

[36] Lucas Janson, Tommy Hu, and Marco Pavone. “Safe motion planning in unknown
environments: Optimality benchmarks and tractable policies”. In: arXiv preprint arXiv:
1804.05804 (2018).

[37] Hong Jun Jeon, Smitha Milli, and Anca Dragan. “Reward-rational (implicit) choice: A
unifying formalism for reward learning”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 4415–4426.

[38] Xu Ji, Joao F Henriques, and Andrea Vedaldi. “Invariant information clustering for
unsupervised image classification and segmentation”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019, pp. 9865–9874.

[39] Peng Jiang et al. “Rellis-3d dataset: Data, benchmarks and analysis”. In: 2021 IEEE
international conference on robotics and automation (ICRA). 2021, pp. 1110–1116.

[40] Dongshin Kim et al. “Traversability classification using unsupervised on-line visual
learning for outdoor robot navigation”. In: Proceedings 2006 IEEE International Con-
ference on Robotics and Automation, 2006. ICRA 2006. 2006, pp. 518–525.

108
[41] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement learning in robotics:

A survey”. en. In: The International Journal of Robotics Research 32.11 (Sept. 2013),
pp. 1238–1274.

[42] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting self-supervised vi-
sual representation learning”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2019, pp. 1920–1929.

[43] Fahad Lateef and Yassine Ruichek. “Survey on semantic segmentation using deep learn-
ing techniques”. In: Neurocomputing 338 (2019), pp. 321–348.

[44] Hsin-Ying Lee et al. “Unsupervised representation learning by sorting sequences”. In:
Proceedings of the IEEE international conference on computer vision. 2017, pp. 667–
676.

[45] Jan Leike et al. “AI Safety Gridworlds”. en. In: arXiv:1711.09883 [cs] (Nov. 2017).
[46] Maxim Likhachev. Search-Based Planning Library. https://github.com/sbpl/sbpl.

(Visited on 11/24/2014).
[47] Manuel Lopes, Francisco Melo, and Luis Montesano. “Active learning for reward esti-

mation in inverse reinforcement learning”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2009, pp. 31–46.

[48] Viktor Losing, Barbara Hammer, and Heiko Wersing. “Incremental on-line learning: A
review and comparison of state of the art algorithms”. In: Neurocomputing 275 (2018),
pp. 1261–1274.

[49] Björn Lötjens, Michael Everett, and Jonathan P How. “Safe reinforcement learning
with model uncertainty estimates”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2019, pp. 8662–8668.

[50] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: Inter-
national journal of computer vision 60.2 (2004), pp. 91–110.

[51] Matt Luckcuck. “Using formal methods for autonomous systems: Five recipes for for-
mal verification”. In: Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability 237.2 (2023), pp. 278–292.

[52] Kunal Menda, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. “EnsembleDAg-
ger: A Bayesian Approach to Safe Imitation Learning”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2019, pp. 5041–5048.

[53] Joseph Victor Michalowicz, Jonathan M Nichols, and Frank Bucholtz. Handbook of
differential entropy. CRC Press, 2013. isbn: 978042907224i.

[54] Ryusuke Miyamoto et al. “Vision-based road-following using results of semantic seg-
mentation for autonomous navigation”. In: 2019 IEEE 9th International Conference
on Consumer Electronics (ICCE-Berlin). 2019, pp. 174–179.

[55] Robin R Murphy. Disaster robotics. The MIT press, 2014. isbn: 978026253465.

109
[56] Keiji Nagatani et al. “Emergency response to the nuclear accident at the Fukushima

Daiichi Nuclear Power Plants using mobile rescue robots”. In: Journal of Field Robotics
30.1 (2013), pp. 44–63.

[57] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement Learn-
ing”. In: Proceedings of the Seventeenth International Conference on Machine Learning.
ICML ’00. 2000, pp. 663–670.

[58] Scott Niekum et al. “Learning grounded finite-state representations from unstruc-
tured demonstrations”. In: The International Journal of Robotics Research 34.2 (2015),
pp. 131–157.

[59] Yu-ichi Ohta, Takeo Kanade, and Toshiyuki Sakai. “An analysis system for scenes
containing objects with substructures”. In: Proceedings of the Fourth International
Joint Conference on Pattern Recognitions. 1978, pp. 752–754.

[60] Timo Ojala, Matti Pietikäinen, and David Harwood. “A comparative study of texture
measures with classification based on featured distributions”. In: Pattern recognition
29.1 (1996), pp. 51–59.

[61] Takayuki Osa et al. “An Algorithmic Perspective on Imitation Learning”. en. In: Foun-
dations and Trends in Robotics 7.1-2 (2018), pp. 1–179. issn: 1935-8253, 1935-8261.

[62] Jitendra Parmar et al. “Open-world machine learning: applications, challenges, and
opportunities”. In: ACM Computing Surveys 55.10 (2023), pp. 1–37.

[63] Theodosios Pavlidis. Structural Pattern Recognition. New York: Springer, 1980, pp. 46–
64.

[64] Martin L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. eng. Wiley series in probability and statistics. OCLC: 254152847. Hoboken, NJ:
Wiley-Interscience, 2005. isbn: 9780471727828.

[65] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[66] Deepak Ramachandran and Eyal Amir. “Bayesian Inverse Reinforcement Learning.”
In: Proceedings of the International Joint Conference on Artificial Intelligence. Vol. 7.
2007, pp. 2586–2591.

[67] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. “Maximum margin
planning”. In: Proceedings of the International Conference on Machine learning. 2006,
pp. 729–736.

[68] Stuart Russell. Human compatible: Artificial intelligence and the problem of control.
Penguin, 2019.

[69] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 4510–4520.

110
[70] Adarsh Jagan Sathyamoorthy et al. “Terrapn: Unstructured terrain navigation using

online self-supervised learning”. In: 2022 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). 2022, pp. 7197–7204.

[71] Satinder Singh, Richard L Lewis, and Andrew G Barto. “Where do rewards come
from?” In: Proceedings of the annual conference of the cognitive science society. Cog-
nitive Science Society. 2009, pp. 2601–2606.

[72] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Sec-
ond edition. Cambridge, Massachusetts: The MIT Press, 2018. isbn: 9780262039246.

[73] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolutional
neural networks”. In: International conference on machine learning. PMLR. 2019,
pp. 6105–6114.

[74] Yewteck Tan et al. “Risk-aware autonomous navigation”. In: Artificial Intelligence and
Machine Learning for Multi-Domain Operations Applications III. Vol. 11746. SPIE.
2021, pp. 335–348.

[75] Marco Toldo et al. “Unsupervised domain adaptation in semantic segmentation: a
review”. In: Technologies 8.2 (2020), p. 35.

[76] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral Cloning from Observa-
tion”. In: Proceedings of the International Joint Conference on Artificial Intelligence,
IJCAI-18. July 2018, pp. 4950–4957.

[77] Alexander JB Trevor, John G Rogers, and Henrik I Christensen. “Omnimapper: A
modular multimodal mapping framework”. In: Proceedings of the IEEE International
Conference on Robotics and Automation. 2014, pp. 1983–1990.

[78] Jessica Van Brummelen et al. “Autonomous vehicle perception: The technology of
today and tomorrow”. In: Transportation research part C: emerging technologies 89
(2018), pp. 384–406.

[79] Li Wang and Dong-Chen He. “Texture classification using texture spectrum”. In: Pat-
tern recognition 23.8 (1990), pp. 905–910.

[80] Maggie Wigness and John G Rogers. “Unsupervised semantic scene labeling for stream-
ing data”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 4612–4621.

[81] Maggie Wigness, John G. Rogers, and Luis E. Navarro-Serment. “Robot Navigation
from Human Demonstration: Learning Control Behaviors”. en. In: IEEE International
Conference on Robotics and Automation (ICRA). Brisbane, Queensland, May 2018,
pp. 1150–1157.

[82] Maggie Wigness et al. “A rugd dataset for autonomous navigation and visual perception
in unstructured outdoor environments”. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2019, pp. 5000–5007.

111
[83] Maggie Wigness et al. “Using perception cues for context-aware navigation in dynamic

outdoor environments”. In: Field Robotics 1.1 (Oct. 2021), pp. 1–33.
[84] Tichakorn Wongpiromsarn et al. “Formal Methods for Autonomous Systems”. In: arXiv

preprint arXiv:2311.01258 (2023).
[85] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. “Maximum entropy deep

inverse reinforcement learning”. In: arXiv preprint arXiv:1507.04888 (2015).
[86] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner. “Watch this: Scalable

cost-function learning for path planning in urban environments”. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2016, pp. 2089–
2095.

[87] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner. “Watch this: Scalable
cost-function learning for path planning in urban environments”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). 2016, pp. 2089–2095.

[88] Chenliang Xu and Jason J Corso. “Evaluation of super-voxel methods for early video
processing”. In: 2012 IEEE conference on computer vision and pattern recognition.
2012, pp. 1202–1209.

[89] Chenliang Xu, Caiming Xiong, and Jason J Corso. “Streaming hierarchical video seg-
mentation”. In: European Conference on Computer Vision. Springer. 2012, pp. 626–
639.

[90] Hongshan Yu et al. “Methods and datasets on semantic segmentation: A review”. In:
Neurocomputing 304 (2018), pp. 82–103.

[91] Jiakai Zhang and Kyunghyun Cho. “Query-Efficient Imitation Learning for End-to-End
Simulated Driving”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
AAAI’17. San Francisco, California, USA: AAAI Press, 2017, pp. 2891–2897.

[92] Shao Zhifei and Er Meng Joo. “A survey of inverse reinforcement learning techniques”.
In: International Journal of Intelligent Computing and Cybernetics 5 (3 2012).

[93] Zhi-Hua Zhou. “A brief introduction to weakly supervised learning”. In: National sci-
ence review 5.1 (2018), pp. 44–53.

[94] Fuzhen Zhuang et al. “A comprehensive survey on transfer learning”. In: Proceedings
of the IEEE 109.1 (2020), pp. 43–76.

[95] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Carnegie Mellon University, 2010.

[96] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning.” In: AAAI.
Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

